首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomembrane models built at the interface between two immiscible electrolytes (ITIES) are useful systems to study phenomena of biological relevance by means of their electrochemical processes. The unique properties of ITIES allow one either to control or measure the potential difference across the biomimetic membranes. Herein we focus on phospholipid monolayers adsorbed at liquid–liquid interfaces, and besides discussing recent developments on the subject, we describe electrochemical techniques that can be used to get insight on the interfacial processes and electrostatic properties of phospholipid membranes at the ITIES. In particular, we examine the electrochemical and physicochemical properties of (modified) phospholipid monolayers and their interaction with other biologically relevant compounds. The use of liquid–liquid electrochemistry as a powerful tool to characterize drug properties is outlined. Although this review is not a survey of all the work in the field, it provides a comprehensive referencing to current research.  相似文献   

2.
Metal nanoparticles are readily formed, with a reasonable degree of size and shape control, using solution‐based reduction methods under ambient conditions. Despite the large number of reports in this field, much of our knowledge of nanoparticle growth is largely empirical, with the relationship between particle form and growth conditions, for example, still not well understood. Many nanoparticle preparation routes actually depend on not one, but two, solution phases, i.e. the syntheses involve reaction or transfer at the liquid–liquid (organic–water) interface. This interface can be polarised electrochemically, an approach that offers promise as a route to better understanding, and ultimately control, of nanoparticle growth.  相似文献   

3.
4.
The interaction of hybrid lipid/gramicidin A (gA) monolayers with dextran sulfate (DS) and the effect of this interaction on ion transfer at a liquid-liquid interface is reported. The interfacial and physicochemical properties are studied with Langmuir-Blodgett (LB) and electrochemical techniques. The results obtained from compression isotherms demonstrate that the interactions between the different species in the hybrid monolayer vary according to the chemical nature of the lipid (hydrocarbon region and charge of the head group). Interfacial capacitance measured with AC voltammetry indicates that the DS chains form a rather flat and compact layer when adsorbed to either zwitterionic or negatively charged phospholipid monolayers, and that calcium, even at low concentrations, interacts with the monolayers. These results are successfully described by a model based on the solution of the Poisson-Boltzmann equation in the interfacial region. Ion transfer and interactions with the lipid/gA/DS-modified monolayers were also studied with electrochemical techniques. Admittance data show that although the studied ions are not using gA channels for the transfer through the lipid membranes, the incorporation of gA in the lipid domain and the adsorption of DS at the interface have a significant effect on ion transfer across the monolayers. This effect can be explained as a consequence of the modified surface charge and of the compactness of the lipid domain due to its interaction with gA and to calcium and DS adsorption at the interface. The ion-transfer rate, therefore, depends on the composition of the monolayer and the chemical nature of the ion.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号