首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we demonstrated a highly sensitive electrochemical sensor for the simultaneous detection of Pb (II) and Cd (II) in aqueous solution using carbon paste electrode modified with Eichhornia crassipes powder by square wave anodic stripping voltammetry. The effect of modifier composition, pH, preconcentration time, reduction potential and time, and type of supporting electrolyte on the determination of metal ions were investigated. Pre-concentration on the modified surface was performed at open circuit. The modified electrode exhibited well-defined and separate stripping peaks for Pb (II) and Cd (II). Under optimum experimental conditions, a linear range for both metal ions was from 10 to 5000 μg L?1 with the detection limits of 4.9 μg L?1, 2.1 μg L?1 for Cd(II) and Pb (II), respectively. The modified electrode was found to be sensitive and selective when applied to determine trace amounts of Cd (II) and Pb (II) in natural water samples.  相似文献   

2.
Voltammetric sensors based on bismuth film electrodes are an attractive alternative to other sensors for application in electroanalysis of heavy metals. Bismuth film electrodes can be formed by a similar method on the same substrates as mercury. These systems were used most frequently for simultaneous determination of heavy metals such as Pb, Cd and Zn by anodic stripping voltammetry. Our voltammetric sensor was fabricated on an alumina substrate. A photoresist film prepared by pyrolysis of positive photoresist S‐1813 SP15 on the alumina substrate was used as an electrode support for bismuth film deposition. The influence of the Nafion membrane on the measurement sensitivity of the sensor and mechanical stability of the bismuth film were investigated. The sensor was successfully applied for determination of Pb, Cd and Zn in an aqueous solution in the concentration range of 0.2 to 10 µg L?1 by square wave anodic stripping voltammetry on an in‐situ formed bismuth film electrode with Nafion‐coating. Parameters of the sensor such as sensitivity, linearity, detection limit, repeatability and life‐time were evaluated. In the best case, the detection limits were estimated as 0.07, 0.11 and 0.63 µg L?1 for Pb, Cd and Zn, respectively. Finally, the applicability of the sensor was tested in analysis of Pb, Cd and Zn in real samples of tap and river water using the method of standard additions.  相似文献   

3.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by square‐wave anodic stripping voltammetry (SWASV) using a bismuth nanoparticle modified boron doped diamond (Bi‐BDD) electrode. Bi deposition was performed in situ with the analytes, from a solution of 0.1 mM Bi(NO3)3 in 0.1 M HClO4 (pH 1.2), and gave detection limits of 1.9 μg L?1 and 2.3 μg L?1 for Pb(II) and Cd(II) respectively. Pb2+ and Cd2+ could not be detected simultaneously at a bare BDD electrode, whilst on a bulk Bi macro electrode (BiBE) the limits of detection for the simultaneous determination of Pb2+ and Cd2+ were ca. ten times higher.  相似文献   

4.
Li D  Jia J  Wang J 《Talanta》2010,83(2):332-336
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L−1 for Cd(II) and 0.02 μg L−1 for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples.  相似文献   

5.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

6.
《Electroanalysis》2017,29(3):880-889
A new method for modifying electrodes with Ag nanoparticles (AgNPs) using electrospray deposition for sensitive, selective detection of Zn(II), Cd(II), and Pb(II) in aerosol samples when combined with Bismuth and Nafion coating and square‐wave anodic stripping voltammetry (SWASV) is reported. Carbon stencil‐printed electrodes (CSPEs) fabricated on a polyethylene transparency (PET) sheet were produced for an inexpensive, simple to fabricate, disposable sensor that can be used with the microliter sample volumes for analysis. Sensor performance was improved by modifying the electrode surface with electrospray‐deposited AgNPs. The use of electrospray deposition resulted in more uniform particle dispersion across the electrode surface when compared to drop‐casting. Using AgNP‐modified electrodes combined with Bi and Nafion, experimental detection limits (LODs) of 5.0, 0.5, and 0.1 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively, were achieved. The linear working ranges were 5.0–400.0 μg L−1, 0.5–400.0 μg L−1, and 0.1–500.0 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively. Interference studies showed Cu(II) was the only metal that interfered with this assay but inference could be eliminated with the addition of ferricyanide directly to the sample solution. This electrochemical sensor was applied for the simultaneous determination of Zn(II), Cd(II), and Pb(II) within source particulate matter (PM) samples collected on filters using an aerosol test chamber.  相似文献   

7.
The bismuth bulk electrode is proposed here for the first time in the rotating configuration (BiB‐RDE) as the electrode of choice for voltammetric analysis of selected heavy metal ions. Optimization of chemical and instrumental parameters was carried out to develop a reliable and convenient method for the determination of Zn(II), Cd(II) and Pb(II) by SWASV. Appropriate detection limits were found for environmental monitoring applications in the medium – low µg/L range. The method was validated for Pb(II) determination by certified reference materials. Successful application to the determination of Pb(II) in samples of fortified rainwater and sewage sludge from a steel industry is described.  相似文献   

8.
Bismuth film modified and chemically activated carbon micro‐thread electrodes were investigated for the simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry. The carbon thread electrode was characterised using both surface and electrochemical techniques. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the H2SO4/IPA‐treated carbon thread electrode showed a much improved resistance response (Rct=23 Ω) compared to the IPA‐untreated carbon thread (Rct=8317 Ω). Furthermore, parameters such as the effect of deposition potential, deposition time and Bi(III) concentration were explored using square wave voltammetry. Detection limits (S/N=3) for Cd(II) and Pb(II) were found to be 1.08 µg L?1 and 0.87 µg L?1, respectively and response was found to be linear over the range 5–110 µg L?1. The proposed Bi/IPA‐treated carbon thread electrode exhibited a high selectivity towards Cd(II) and Pb(II) even in the presence of a range of heavy metals and is capable of repetitive and reproducible measurements, being attributed to the high surface area, geometry and electrode treatment characteristics. The proposed metal ion sensor was employed to determine cadmium and lead in river water samples and % RSD was found to be 5.46 % and 5.93 % for Cd(II) and Pb(II) respectively (n=3). Such facile sensing components favour the development of cost effective portable devices for environmental sample analysis and electrochemical applications.  相似文献   

9.
A new carbon‐based mercury thin‐film electrode consisting of screen‐printed carbon on a low temperature co‐fired ceramic substrate was made. Ex‐situ mercury deposition in a potassium thiocyanate solution was used. This approach an electrode with high long‐term stability (>500 measurement cycles) and reproducibility (≤2 %) for sensitive determination of ultra trace heavy metals, using differential pulse anodic stripping voltammetry. The detection limits were 0.25, 0.08 and 5.5 ng mL?1 for Cd(II), Pb(II), and Zn(II), respectively. The method was applied to the determination of the analytes in water, wastewater, lake water, and certified reference material samples with satisfactory results.  相似文献   

10.
This work reports the simultaneous determination of Cd(II), Pb(II) and Zn(II) at the low μg l−1 concentration levels by square wave anodic stripping voltammetry (SWASV) on a bismuth-film electrode (BFE) plated in situ. The metal ions and bismuth were simultaneously deposited by reduction at −1.4 V on a rotating glassy carbon disk electrode. Then, the preconcentrated metals were oxidised by scanning the potential of the electrode from −1.4 to 0 V using a square-wave waveform. The stripping current arising from the oxidation of each metal was related to the concentration of each metal in the sample. The parameters for the simultaneous determination of the three metals were investigated with the view to apply this type of voltammetric sensor to real samples containing low concentrations of metals. Using the selected conditions, the limits of detection were 0.2 μg l−1 for Cd and for Pb and 0.7 μg l−1 for Zn at a preconcentration time of 10 min. Finally, BFE's were successfully applied to the determination of Pb and Zn in tapwater and human hair and the results were in satisfactory statistical agreement with atomic absorption spectroscopy (AAS).  相似文献   

11.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

12.
The determination of organic and inorganic compounds in a single run is still a great challenge. In this paper, we developed a method for fast simultaneous determination of ascorbic acid (AA) and zinc ions (Zn) using batch injection analysis with detection by square-wave anodic stripping voltammetry (BIA-SWASV). Britton-Robinson (BR) buffer solution (pH=6.0) as the supporting electrolyte and boron doped diamond (BDD) as the working electrode. The method presented favorable analytical characteristics such as fast response (67 injections h−1), low detection limits (0.2 and 5.4 μmol L−1 for Zn ions and AA, respectively) and recovery values of 99±3%.  相似文献   

13.
A procedure has been developed for the determination of the concentration of heavy metals (Pb, Mn, Cu, Ni, Zn, and Cd) in atmospheric air by atomic emission spectrometry with gas-discharge sampling onto the end of a standard carbon electrode. A design of a two-section sampler is proposed; the sampler provides the rapid determination of deposition factors for heavy metals contained in aerosol particles deposited onto the end of a carbon electrode. Examples of determining metal concentrations in a model sample of air and in atmospheric air and determination limits of metals deposited onto the end of a carbon electrode are given.  相似文献   

14.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

15.
A simple electroanalytical method for Cd(II) and Pb(II) detection based on differential pulse anodic stripping voltammetry (DPSV) with in situ prepared antimony-modified glassy carbon rotating disk electrode (in situ Sb-GC-RDE) was developed. The electrochemical detection was performed in a microdroplet (50 μL) of 0.01 M hydrochloric acid that is placed between the electrode surface (top) and a Parafilm®-covered glass slide to maintain a hydrophobic surface (bottom). This method includes a preconcentration process using a membrane filter (MF). The target metal ions were complexed with 1-(2-pyridylazo)-2-naphthol (PAN) as a chelating agent, which was accumulated on the MF via filtration. The RDE microdroplet anodic stripping voltammetry was suitable for the elution and determination of metal ions accumulated on the MF. The in situ preparation of antimony-modified electrode allows the use of common GC electrode with high performance. The detection limits for Cd(II) and Pb(II) were 1.4 and 1.1 μg/L, respectively. The proposed method was successfully used in natural water samples for the simultaneous determination of Cd(II) and Pb(II).  相似文献   

16.
The utility of the cylindrical silver‐based mercury film electrode of prolonged analytical application in stripping chronopotentiometry (SCP) was examined. This electrode allowed us to obtain good reproducibility of results owing to the special electrode design, which enables regeneration of the thin layer before each measurement cycle. The accessible potential window in KNO3 (pH 2), acetate and ammonia buffers was defined, and the optimal conditions (i.e., stripping current, deposition potential and deposition time) for the determination of Cd and Pb traces were selected. The detection limits, obtained for an accumulation time of 60 s, were 0.023 μg/L for Cd and 0.075 μg/L for Pb. The response increases linearly with Cd, Pb and Zn concentration, up to at least 100 μg/L. It was also shown that the proposed procedure ensures excellent separation of the In and Tl, Pb and Tl or the In and Cd signals. The method was tested with dolomite and lake sediment samples, and good agreement with reference values was achieved. The obtained results showed good reproducibility (RSD=5–6%) and reliability.  相似文献   

17.
Flow injection (FI) and sequential injection (SI) systems with anodic stripping voltammetric detection have been exploited for simultaneous determination of some metals. A pre-plated mercury film on a glassy carbon disc electrode was used as a working electrode in both systems. The same film can be repeatedly applied for at least 50 analysis cycles, thus reducing the mercury consumption and waste. A single line FI voltammetric system using an acetate buffer as a carrier and an electrolyte solution was employed. An injected standard/sample zone was mixed with the buffer in a mixing coil before entering a flow cell. Metal ions were deposited on the working electrode by applying a potential of −1.1 V vs Ag/AgCl reference electrode. The stripping was performed by anodically scanning potential of working electrode to +0.25 V, resulting a voltammogram. Effects of acetate buffer concentration, flow rate and sample volume were investigated. Under the selected condition, detection limits of 1 μg l−1 for Cd(II), 18 μg l−1 for Cu(II), 2 μg l−1 for Pb(II) and 17 μg l−1 for Zn(II) with precisions of 2–5% (n=11) were obtained. The SI voltammetric system was similar to the FI system and using an acetate buffer as a carrier solution. The SI system was operated by a PC via in-house written software and employing an autotitrator as a syringe pump. Standard/sample was aspirated and the zone was then sent to a flow cell for measurement. Detection limits for Cd(II), Cu(II), Pb(II) and Zn(II) were 6, 3, 10 and 470 μg l−1, respectively. Applications to water samples were demonstrated. A homemade UV-digester was used for removing organic matters in the wastewater samples prior to analysis by the proposed voltammetric systems.  相似文献   

18.
An in-situ antimony film screen-printed carbon electrode (in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L−1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples.  相似文献   

19.
A novel electrochemical cell design is proposed to allow fast, reproducible and highly efficient convective transport of dissolved substances to screen‐printed electrochemical three‐electrode strips mounted on miniaturized plastic vessels, with the goal of improving detection limits in disposable electrochemical stripping field sensors. The experimental configuration has been tested for accumulation of the selected heavy metals ions Zn(II), Cd(II), and Pb(II), codeposited with bismuth ions on a carbon disk screen‐printed working electrode before detection by square wave anodic stripping voltammetry. Chemical and instrumental variables of the proposed device and associate electrochemical method were optimized. Selected parameters gave detection limits in the low ng mL?1 range with moderate deposition time (120 s). Practical applicability was tested on certified water and real samples (tap water and waste water), with acceptable results, suggesting potential usefulness for field environmental monitoring of heavy metals.  相似文献   

20.
In this paper, Potentiometric Stripping Analysis (PSA) was simultaneously used to determine the concentrations of trace metals (Zn, Cd, Pb and Cu) in human plasma. The metal ions were concentrated as their amalgams on the glassy carbon surface of a working electrode that was previously coated with a thin mercury film and then stripped by a suitable oxidant. The selection of the experimental conditions was made by using the experimental‐designed methodology. The optimum conditions of the method includes a 0.2 M HAc‐NaAc buffer mixture (pH 4.5) as supporting electrolyte, and an electrolysis potential of‐1220 mV. The limits of detection (LOD) were obtained 1 μg L?1 for Zn(II) and Pb(II), 0.5 μg L?1 for Cu(II) and 2 μg L?1 for Cd(II) in the studied medium. The good recoveries were obtained for the analysis in human plasma. The method was applied to blood samples, using the method of standard additions and the results were compared with Inductively Coupled Plasma‐Atomic Emission Spectrometry (ICP‐AES) as reference method. Furthermore, a simple digestion protocol of samples is investigated compared to the conventional digestion method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号