首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have studied the characterization of thermophilic cytochrome P450 (P450st)‐didodecyldimethylammonium bromide (DDAB) films by using UV‐vis absorption, resonance Raman spectroscopy, and electrochemical methods. The observed Raman spectrum indicated near‐native conformation of the heme iron in DDAB film on the surface of a glass slide, while on the surface of a plastic‐formed carbon (PFC) electrode, the conformation of P450st‐DDAB was very similar to that of heme‐DDAB film, suggesting the release of heme from P450st in DDAB films on PFC electrodes. When NaBr was added as salt to the casting solution, the result of Raman spectrum indicated near‐native conformation of P450st in DDAB film even on the PFC electrode, but no redox potential of P450st which has near native structure was observed. This study suggests the essential experimental conditions when working with heme protein‐DDAB films as, in some cases, heme iron from proteins is released on the surface of the electrode.  相似文献   

2.
Based on electrostatic interaction and electrodeposition, poly‐anionic deoxyribonucleic acid (DNA), room temperature ionic liquid 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate (BMIMBF4), hemoglobin (Hb) and Poly(diallyldimethylammonium chloride) (PDDA) were successfully assembled into Hb/IL/DNA/PDDA layer‐by‐layer complex films on the surface of ITO electrode. FTIR spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the composite film. The obtained results demonstrated that the Hb molecule in the film kept its native structure and showed its good electrochemical behavior. A pair of well‐defined redox peaks of Hb with the formal potentials (E°′) of ?0.180 V (vs. SCE) was appeared in phosphate buffer solution (PBS, pH 7.0). The Hb/IL/DNA/PDDA/ITO modified electrode also showed an excellent electrocatalytic behavior to the reduction of hydrogen peroxide (H2O2). Therefore, the IL/DNA/PDDA complex film as a novel matrix open up a possibility for further study on the direct electrochemistry of other proteins and the fabrication of the third‐generation electrochemical biosensors.  相似文献   

3.
Stable thin films made from dimyristoyl phosphatidylcholine (DMPC) with incorporated hemoglobin (Hb) on pyrolytic graphite (PG) electrodes were characterized by electrochemical and other techniques. Cyclic voltammetry (CV) of Hb-DMPC films showed a pair of well-defined and nearly reversible peaks at about -0.27 V vs. saturated calomel electrode (SCE) at pH 5.5, characteristic of Hb heme Fe(III)/Fe(II) redox couple. The electron transfer between Hb and PG electrodes was greatly facilitated in DMPC films. Apparent heterogeneous rate constants (ks) were estimated by fitting square wave voltammograms of Hb-DMPC films to a model featuring thin layer behavior and dispersion of formal potentials for redox center. The formal potential of Hb heme Fe(III)/Fe(II) couple in DMPC films shifted linearly between pH 4.5 to 11 with a slope of -48 mV pH-1, suggesting that one proton is coupled to each electron transfer in the electrochemical reaction. Soret absorption band positions suggest that Hb retains a near native conformation in DMPC films at medium pH. Differential scanning calorimetry (DSC) showed the phase transition for DMPC and Hb-DMPC films, suggesting DMPC has an ordered multibilayer structure. Trichloroacetic acid (TCA) was catalytically reduced by Hb-DMPC films with significant decreases in the electrode potential required.  相似文献   

4.
将双十二烷基二甲基溴化铵(DDAB)-粘土(Clay)复合物的水分散系与肌红蛋白(Mb)水溶液的混合物涂布到热解石墨(PG)电极表面,可制得Mb-DDAB-Clay薄膜电极.在pH5.5的缓冲溶液中,该薄膜电极在-0.25V(vs.SCE)处有一对可逆的循环伏安还原氧化峰,为Mb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.在DDAB-Clay薄膜的微环境中,Mb与PG电极之间的电子传递得到极大促进,并显示了很好的稳定性.Soret吸收带的位置表明,在适中的pH范围内,Mb在薄膜中保持了其原始构象.X射线衍射实验结果表明,Mb的嵌入并未对薄膜的有序多层结构有很大影响.在DDAB-Clay薄膜环境中,Mb血红素Fe(Ⅲ)/Fe(Ⅱ)电对的式量电位在pH4.5~11.0范围内与溶液pH值成线性关系,表明Mb的电化学还原很可能是一个质子伴随一个电子的电极过程.Mb-DDAB-Clay薄膜可以用于催化还原溶解氧和三氯乙酸.  相似文献   

5.
When a solid substrate with negative surface charges was placed in an aqueous didodecyldimethylammonium bromide (DDAB) vesicle dispersion, the cationic surfactant DDAB with two hydrocarbon chains could be assembled into the biomembrane-like tail-to-tail double-layer structure on the solid surface with the positively charged head groups toward outside, making the surface charge reverse from negative to positive. After the solid substrate with DDAB was immersed in a hemoglobin (Hb) solution at pH 9.0, the negatively charged Hb was adsorbed on the surface of DDAB layer by electrostatic attraction, forming a DDAB/Hb film. By repeating this adsorption cycle, the {DDAB/Hb}(n) layer-by-layer films were assembled on solid surfaces, which was confirmed by UV-vis spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). The stable {DDAB/Hb}(n) films assembled on pyrolytic graphite (PG) electrodes showed two pairs of nearly reversible redox peaks at about -0.22 and -1.14 V vs SCE in pH 7.0 buffers, characteristic of the Hb heme Fe(III)/Fe(II) and Fe(II)/Fe(I) redox couples, respectively. The direct electrochemistry of Hb in the films could be used to electrocatalyze reduction of various substrates. UV-vis and IR spectroscopic results and comparison experiments with {DDAB/hemin}(n) films indicate that Hb in the {DDAB/Hb}(n) films essentially retains its native structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films with different outermost layers.  相似文献   

6.
The natural catalytic cycle of cytochrome (cyt) P450 enzymes in human liver microsome (HLM) films was activated electrochemically via the electron transfer sequence electrode→cyt P450 reductase (CPR)→cyt P450. Cyclic voltammograms for HLM films had midpoint potentials of ?0.50 V vs. SCE at pH 7.4 characteristic of CPR, not cyt P450s. HLM and CPR microsomes without cyt P450s did not electrocatalytically reduce H2O2, and did not shift midpoint potential when CO was added, also indicating that the peaks do not correspond to iron heme cyt P450 enzymes. Electrochemical activation of the natural cyt P450 cycle for substrate conversion via CPR in HLM films was confirmed by catalytic electrolysis in an electrochemical microfluidic array designed to generate and detect reactive metabolites by measuring their reactivity with DNA.  相似文献   

7.
辣根过氧化物酶在表面活性剂膜中的直接电化学   总被引:14,自引:0,他引:14  
利用3种表面活性剂分别将辣根过氧化氢酶固定在裂解石墨棱面(edge-plane pyrolytic graphite,EPG)电极表面,研究了辣根过氧化物酶(HRP)中Fe(Ⅲ)/Fe(Ⅱ)电对与电极之间的直接电子传递过程以及酶催化双氧化还原过程。实验结果表明:(1)表面活性剂是一种固定酶的理想材料;(2)这种体系可能构造第三代生物传感器,对解释生物体代谢过程具有理论意义,对制备第三代生物传感器具有应用价值。  相似文献   

8.
《Analytical letters》2012,45(13):2103-2115
Abstract

Direct electrochemistry and electrocatalysis of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), incorporated in polyethylene glycol (PEG) films, were studied by cyclic voltammetry. The two proteins exhibited a pair of well‐defined, quasi‐reversible cyclic voltammetric peaks with the apparent formal potential at about ?0.21 V (Hb) and ?0.22 V (Mb), respectively, vs. saturated calomel electrode (SCE) in pH 5.0 acetate buffer solution, characteristic of the h eme Fe(III)/Fe(II) redox couples, indicating enhanced electron transfer between the proteins and the substrate electrode in the PEG film environment. The protein–PEG films could also exhibit excellent stability. Meanwhile, positions of Soret absorption band of the proteins in the PEG films suggested that the heme proteins kept their secondary structure similar to their native state in the medium pH range. Oxygen, trichloroacetic acid, nitric oxide, and hydrogen peroxide could all be catalytically reduced by Hb or Mb in PEG films.  相似文献   

9.
Cyclic voltammetry of thin films made from the lipid dimyristoylphosphatidyl choline and reaction centers from the purple bacterium Rhodobacter sphaeroides on pyrolytic graphite electrodes in bromide-free pH 8 buffers at 4 degrees C revealed an oxidation peak at 0.98 V and a reduction peak at -0.17 V vs. NHE. No reverse CV peaks were found, suggesting chemical irreversibility. The reduction peak disappeared for reaction centers depleted of quinones, suggesting that the peak represents reduction of this cofactor. The oxidation peak showed a catalytic current increase in the presence of small amounts of ferrous cytochrome c, and decreased by 85% when illuminated by visible light, suggesting assignment to the primary donor (P) cofactor. While oxidized primary donor P(+) is destroyed upon electrochemical formation in the film, reaction of ferrous cyt c with P(+) suggests its persistence in the films on the microsecond time scale.  相似文献   

10.
Sun Z  Li Y  Zhou T  Liu Y  Shi G  Jin L 《Talanta》2008,74(5):1692-1698
In this paper, layer-by-layer (LBL) {MSU/Hb}(n)/PDDA films assembled by alternate adsorption of positively charged hemoglobin (Hb) and negatively charged mesoporous molecular sieves of Al-MSU-S onto a glassy carbon electrode (GCE) were reported. Al-MSU-S was synthesized by the precursor of zeolite Y and ionic liquids 1-hexadecane-3-methylimidazolium bromide (CMIMB) as a template in basic medium. It exhibited larger pore diameter, pore volume and surface area. Direct electrochemical and electrocatalytic properties of Hb in these layer-by-layer films were investigated. A pair of well-defined nearly reversible cyclic voltammetric peaks was observed and the formal potential of the heme Fe(III)/Fe(II) redox couple was found to be -0.295V (vs. SCE). The influences of layer's number and the pH of the external solution to the electron transfer behavior of Hb in {MSU/Hb}(n)/PDDA films were also estimated by cyclic voltammetry and a set of optimized conditions for film fabrication was inferred. The hemoglobin in{MSU/Hb}(n)/PDDA films displayed a good electrocatalytic activity to the reduction of hydrogen peroxide, which had linear current responses from 1.0 x 10(-6) to 1.86 x 10(-4)mol/L with the detection limit of 5.0 x 10(-7)mol/L (S/N=3). The apparent Michaeli-Menten constant (K(m)(app)) was 0.368 mmol/L. Thus, this methodology shows potential application of the preparation of third-generation biosensors.  相似文献   

11.
Direct electron transfer was found to be greatly facilitated for horseradish peroxidase (HRP) in a didodecyldimethylammonium bromide (DDAB) biomembrane-like film at a pyrolytic graphite (PG) electrode involving the FeIII FeII couple. The heterogeneous electron transfer rate constant ks was fitted as 9.0 s−1 using the non-linear regression analysis of the square wave voltammograms at a series of frequencies and pulse heights. The pH dependence of the formal potential for HRP in DDAB film at medium pH environments suggested one-proton transfer coupled with a one-electron transfer reaction. Scanning electron microscopy (SEM) showed different film morphology for HRP and HRP---DDAB films. UV–vis and reflectance absorption infrared (RAIR) spectra inferred that the heme state of HRP in DDAB film was similar to that in its native state. Circular dichroism (CD) results indicated slight perturbation of DDAB on the second structure of HRP. Thus, the embedded HRP in the biomembrane-like DDAB film showed nearly native structural properties and improved electrochemical characteristics. This has potential value for the basic and applied bioelectrochemistry of enzymes.  相似文献   

12.
Layered, electrochemically active films of bacterial iron-sulfur protein putidaredoxin (Pdx) and poly(dimethyldiallyammonium) (PDDA) polycations were constructed on gold electrodes coated with mercaptopropane sulfonate (MPS) and on quartz slides. Second-derivative UV-vis spectra suggested similar structures of Pdx in films and solutions at pH 7. Direct electrochemistry was achieved between Pdx and gold electrodes in these films, with significantly better electrochemical reversibility than in cast Nafion-lipid-Pdx films. A formal potential dispersion model gave a good fit to square wave voltammograms by regression analysis and was used to estimate an average apparent rate constant of 4.5 s(-1). Reduced Pdx in the polyion films did not react with its natural redox partner cytochrome P450(cam) because of unfavorable thermodynamics in the film environment. Copyright 2000 Academic Press.  相似文献   

13.
Thin film voltammetry was used to obtain direct, reversible, electron-transfer peaks between electrodes and the spinach photosystem II (PS II) reaction center in lipid films for the first time. Three well-defined pairs of reduction-oxidation peaks were found using cyclic and square wave voltammetry at 4 degrees C at pH 7.5, reflecting direct, reversible electron transfer involving cofactors of PS II. These peaks were assigned to the oxygen-evolving complex (OEC) tetramanganese cluster (Em = 0.2 V vs NHE), quinones (Em = -0.29 V), and pheophytin (Em = -0.72 V). PS II that was depleted of the OEC did not give the peak at 0.2 V. Observed Em values, especially for the OEC, may be influenced by protein-lipid interactions and electrode double-layer effects. Voltammetry at pH 6 and at pH 7.5 with a time window of >100 ms revealed that the manganese cluster oxidation is gated by slow deprotonation of a reduced form. Additional rapid protonation/deprotonation steps are also involved in the electrochemical reduction-oxidation pathways.  相似文献   

14.
The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at −2 and −278 mV (with a ratio of 1e:3e) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were −20 and −254 mV. All redox responses exhibit a pH dependence of approximately −59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry.  相似文献   

15.
Shen L  Huang R  Hu N 《Talanta》2002,56(6):1051-1139
Electrochemical behavior of myoglobin (Mb) incorporated in polyacrylamide (PAM) hydrogel films cast on pyrolytic graphite (PG) electrodes were investigated. Mb–PAM film electrodes showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for Mb Fe(III)/Fe(II) redox couple at about −0.27 (vs. SCE) in pH 5.5 buffers. The electron exchange of Mb with PG electrodes was greatly enhanced in PAM films. The apparent heterogeneous electron transfer rate constant (ks) and formal potential (E°′) were estimated by fitting the data of square wave voltammetry (SWV) with non-linear regression analysis. The formal potential of Mb–PAM films shifted linearly with pH with a slope of −0.52 V, showing the electron transfer was accompanied by a single-proton transportation. Positions of Soret absorbance band of Mb–PAM films suggest that Mb maintains its secondary structure similar to its native state in the films in the medium pH range. Oxygen, trichloroacetic acid (TCA) and nitrite were catalytically reduced by Mb–PAM film electrodes with significant lowering of overpotential. Potential application of Mb–PAM films as biosensors to monitor some substrates was proposed.  相似文献   

16.
Stable films made from ionomer poly(ester sulfonic acid) or Eastman AQ29 on pyrolytic graphite (PG) electrodes gave direct electrochemistry for incorporated enzyme horseradish peroxidase (HRP). Cyclic voltammetry of HRP-AQ films showed a pair of well-defined, nearly reversible peaks at about -0.33 V vs. SCE at pH 7.0 in blank buffers, characteristic of HRP heme Fe(III)/Fe(II) redox couple. The electron transfer between HRP and PG electrode was greatly facilitated in AQ films. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry (SWV) with nonlinear regression analysis. Reflectance absorption infrared (RAIR) and UV-Vis absorption spectra demonstrated that HRP retained a near native conformation in AQ films. The embedded HRP in AQ films retained the electrocatalytic activity for oxygen, nitrite and hydrogen peroxide. Possible mechanism of catalytic reduction of H(2)O(2) with HRP-AQ films was proposed.  相似文献   

17.
将酞菁镍(NiPc)掺入阳离子表面活性剂双十二烷基二甲基溴化铵(DDAB)的氯仿溶液中,并涂布于热解石墨电极表面,待氯仿挥发后制得NiPc-DDAB薄膜电极。循环伏安实验表明,在KBr溶液中,该薄膜电极有两对良好且稳定的还原氧化峰,第一对峰的Epc1=-0.64V,Epa1=-0.60V(vs.SCE);第二对峰的Epc2=-0.84V,Epa2=-0.80V,本文着重探讨了第二对峰的电化学行为,估计了该体系的电化学参数如电子扩散系数De和非均相电极反应速率常数k0'.该薄膜电极可用于催化各种卤代乙酸的电化学还原,用多种表面分析技术对该薄膜进行了表征。  相似文献   

18.
Cyclic voltabsorptometry is used for the first time to distinguish and characterize electrochemically the active (P450) and inactive (P420) forms of cytochromes P450 immobilized on an electrode during voltammetry experiments. This was achieved by using the heme domain (BMP) of the bacterial cytochrome P450 BM3 from Bacillus megaterium (CYP102A1) immobilized on mesopouros tin-oxide (SnO2) electrodes. We demonstrate that the formation of either the P450 form or the P420 one can be obtained by modifying the mesoporous electrode surface with polycations with different properties such as polyethylenimmine (PEI) and polydiallyldimethylammonium chloride (PDDA). Potential step spectroelectrochemistry allowed measurement of reduction potentials of the active P450 form. Values of -0.39+/-0.01 V and -0.58+/-0.01 V (both versus Ag/AgCl) were calculated for the active P450 form immobilized on the BMP/PDDA-SnO2 and BMP/PEI-SnO2 electrodes, respectively. The cyclic voltabsorptometric experiments showed how, when both the active and inactive forms are present on the PEI film, the inactive P420 species tends to dominate the cyclic voltammetric signal.  相似文献   

19.
Stable films made from chitosan (CS) on pyrolytic graphite (PG) electrode gave direct electrochemistry for incorporated enzyme nitrate reductase (NR). Cyclic voltammetry (CV) of NR‐CS films showed a pair of well‐defined and nearly reversible redox peaks at about ?0.430 V vs. SCE at pH 7.0 phosphate buffers, which was considered as the redox of FAD and heme‐ion. The electron transfer between NR and PG electrode was greatly facilitated in CS films. Integration of reduction peaks at different scan rates from 0.01 to 0.5 V s?;1 gave nearly constant charge values, which is characteristic of thin‐larger‐electrochemical behavior. The pH of the solution strongly affected the direct electron transfer of NR‐CS films. EDTA accelerated the electron transfer, and it was proposed as a stimulant for the system. Reflectance absorption infrared spectra demonstrated that NR retained a nearly native conformation in CS films.  相似文献   

20.
研究了由阳离子表面活性剂双十二烷基二甲基溴化铵分别和C60或C70在玻碳电极表面形成的膜在0.5mol/L KCl溶液中的电化学,发现在0~-1.0V范围内,有两对峰形较好的还原再氧化峰。实验结果表明,该修饰电极有较好的稳定性和重现性,对三氯乙酸和一氯乙酸的还原,表现出良好的电催化去卤化作用,说明修饰电极上的富勒烯是良好的电子传递媒介体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号