首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a projection scheme whose end‐of‐step velocity is locally pointwise divergence free, using a continuous ?1 approximation for the velocity in the momentum equation, a first‐order Crouzeix–Raviart approximation at the projection step, and a ?0 approximation for the pressure in both steps. The analysis of the scheme is done only for grids that guarantee the existence of a divergence free conforming ?1 interpolant for the velocity. Optimal estimates for the velocity error in L2‐ and H1‐norms are deduced. The numerical results demonstrate that these estimates should also hold on grids on which the continuous ?1 approximation for the velocity locks. Since the end‐of‐step velocity is locally solenoidal, the scheme is recommendable for problems requiring good mass conservation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, high‐order compact finite difference calculations are reported for 2D unsteady incompressible circular vortex flow in primitive variable formulation. The fourth‐order Runge–Kutta temporal discretization is used together with fourth‐ or tenth‐order compact spatial discretization. Dependent on the perturbation initially imposed, the solutions display a tripole, triangular or square vortex. The comparison of the predictions with the detailed spectral calculations of Kloosterziel and Carnevale (J. Fluid Mech. 1999; 388 :217–257) shows that the vorticity fields are very well captured. The spectral resolution of the present method was quantified from the decomposition of the vorticity distribution in its azimuthal components and compared with reported spectral results. Using identical grid resolution to the reference results yields negligible differences in the main features of the flow. The perturbation amplitude and its first harmonic are virtually identical to the reference results for both fourth‐ or tenth‐order spatial discretization, as theoretically expected but seldom a posteriori verified. The differences between the two spatial discretizations appear only for coarser grids, favouring the tenth‐order discretization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The global linear stability analysis (LSA) of stationary/steady flows has been applied to various flows in the past and is fairly well understood. The LSA of time‐averaged flows is explored in this paper. It is shown that the LSA of time‐averaged flows can result in useful information regarding its stability. The method is applied to study flow past a cylinder at Reynolds number (Re) beyond the onset of vortex shedding. Compared with the direct numerical simulation, LSA of the Re=100 steady flow severely underpredicts the vortex shedding frequency. However, the LSA of the time‐averaged flow results in the correct value of the non‐dimensional frequency, St, of the associated instability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The paper presents an efficient finite volume method for unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements for both single‐ and two‐phase flows. Mathematical model used in computations is based on the ensemble averaged conservation equations. These equations are solved for each phase and in case of single‐phase flow reduce to the transient Reynolds‐averaged Navier–Stokes (TRANS) equations. Transient flow induced by rotating impellers is thus resolved in time. The use of unstructured grids allows an easy and flexible meshing for the entire flow domain. Polyhedral cell volumes are created on the arbitrary mesh interface placed between rotating and static parts. Cells within the rotating parts move each time step and the new faces are created on the arbitrary interfaces only, while the rest of the domain remain ‘topologically’ unchanged. Implicit discretization scheme allows a wide range of time‐step sizes, which further reduce the computational effort. Special attention is given to the interpolation practices used for the reconstruction of the face quantities. Mass fluxes are recalculated at the beginning of each time step by using an interpolation scheme, which enhances the coupling between the pressure and velocity fields. The model has been implemented into the commercially available CFD code AVL SWIFT (AVL AST, SWIFT Manual 3.1, AVL List GmbH, Graz, Austria, 2002). Single‐phase flow in a mixing vessel stirred by a six‐bladed Rushton‐type turbine and two‐phase flow in aerated stirred vessel with the four‐blade Rushton impeller are simulated. The results are compared with the available experimental data, and good agreement is observed. The proposed algorithm is proved to be both stable and accurate for single‐phase as well as for the two‐phase flows calculations. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Combining mesh‐less finite difference method and least square approximation, a new numerical model is developed for water wave propagation model in two horizontal dimensions. In the numerical formulation of the method, the approximation of the unknown functions and their derivatives are constructed on a set of nodes in a local circular‐shaped region. The Boussinesq equations studied in this paper is a fully nonlinear and highly dispersive model, which is composed of the exact boundary conditions and the truncated series expansion solution of the Laplace equation. The resultant system involves a sparse, unsymmetrical matrix to be solved at each time step of the simulation. Matrix solutions are studied to reduce the computing resource requirements and improve the efficiency and accuracy. The convergence properties of the present numerical method are investigated. Preliminary verifications are given for nonlinear wave shoaling problems; the numerical results agree well with experimental data available in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper contains a comparison of four SIMPLE‐type methods used as solver and as preconditioner for the iterative solution of the (Reynolds‐averaged) Navier–Stokes equations, discretized with a finite volume method for cell‐centered, colocated variables on unstructured grids. A matrix‐free implementation is presented, and special attention is given to the treatment of the stabilization matrix to maintain a compact stencil suitable for unstructured grids. We find SIMPLER preconditioning to be robust and efficient for academic test cases and industrial test cases. Compared with the classical SIMPLE solver, SIMPLER preconditioning reduces the number of nonlinear iterations by a factor 5–20 and the CPU time by a factor 2–5 depending on the case. The flow around a ship hull at Reynolds number 2E9, for example, on a grid with cell aspect ratio up to 1:1E6, can be computed in 3 instead of 15 h.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Conjunctive modelling of free/porous flows provides a powerful and cost‐effective tool for designing industrial filters used in the process industry and also for quantifying surface–subsurface flow interactions, which play a significant role in urban flooding mechanisms resulting from sea‐level rise and climate changes. A number of well‐established schemes are available in the literature for simulation of such regimes; however, three‐dimensional (3D) modelling of such flow systems still presents numerical and practical challenges. This paper presents the development of a fully 3D, transient finite element model for the prediction and quantitative analyses of the hydrodynamic behaviour encountered in industrial filtrations and environmental flows represented by coupled flows. The weak‐variational formulation in this model is based on the use of C0 continuous equal‐order Lagrange polynomial functions for velocity and pressure fields represented by 3D hexahedral finite elements. A mixed UVWP finite element scheme based on the standard Galerkin technique satisfying the Ladyzhenskaya–Babuska–Brezzi stability criterion through incorporation of an artificial compressibility term in the continuity equation has been employed for the solution of coupled partial differential equations. We prove that the discretization generates unified stabilization for both the Navier–Stokes and Darcy equations and preserves the geometrical flexibility of the computational grids. A direct node‐linking procedure involving the rearrangement of the global stiffness matrix for the interface elements has been developed by the authors, which is utilized to couple the governing equations in a single model. A variety of numerical tests are conducted, indicating that the model is capable of yielding theoretically expected and accurate results for free, porous and coupled free/porous problems encountered in industrial and environmental engineering problems representing complex filtration (dead‐end and cross‐flow) and interacting surface–subsurface flows. The model is computationally cost‐effective, robust, reliable and easily implementable for practical design of filtration equipments, investigation of land use for water resource availability and assessment of the impacts of climatic variations on environmental catastrophes (i.e. coastal and urban floods). The model developed in this work results from the extension of a multi‐disciplinary project (AEROFIL) primarily sponsored by the European aerospace industries for development of a computer simulation package (Aircraft Cartridge Filter Analysis Modelling Program), which was successfully utilized and deployed for designing hydraulic dead‐end filters used in Airbus A380.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its performance. This method is capable of dealing with all the instabilities that the standard Galerkin method presents, namely the pressure instability, the instability arising in convection‐dominated situations and the less popular instabilities found when the Navier–Stokes equations have a dominant Coriolis force or when there is a dominant absorption term arising from the small permeability of the medium where the flow takes place. The second objective is to describe a nodal‐based implementation of the finite element formulation introduced. This implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements, thus making the calculations much faster. In order to be able to do this, all the variables have to be defined at the nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of the formulation. However, doing this gives rise to questions regarding the consistency and the conservation properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a novel multidimensional characteristic‐based (MCB) upwind method for the solution of incompressible Navier–Stokes equations. As opposed to the conventional characteristic‐based (CB) schemes, it is genuinely multidimensional in that the local characteristic paths, along which information is propagated, are used. For the first time, the multidimensional characteristic structure of incompressible flows modified by artificial compressibility is extracted and used to construct an inherent multidimensional upwind scheme. The new proposed MCB scheme in conjunction with the finite‐volume discretization is employed to model the convective fluxes. Using this formulation, the steady two‐dimensional incompressible flow in a lid‐driven cavity is solved for a wide range of Reynolds numbers. It was found that the new proposed scheme presents more accurate results than the conventional CB scheme in both their first‐ and second‐order counterparts in the case of cavity flow. Also, results obtained with second‐order MCB scheme in some cases are more accurate than the central scheme that in turn provides exact second‐order discretization in this grid. With this inherent upwinding technique for evaluating convective fluxes at cell interfaces, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of MCB scheme lies in its faster convergence rate with respect to the CB scheme that is found to exhibit substantial delays in convergence reported in the literature. The results obtained using new proposed scheme are in good agreement with the standard benchmark solutions in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this paper we demonstrate that some well‐known finite‐difference schemes can be interpreted within the framework of the local discontinuous Galerkin (LDG) methods using the low‐order piecewise solenoidal discrete spaces introduced in (SIAM J. Numer. Anal. 1990; 27 (6): 1466–1485). In particular, it appears that it is possible to derive the well‐known MAC scheme using a first‐order Nédélec approximation on rectangular cells. It has been recently interpreted within the framework of the Raviart–Thomas approximation by Kanschat (Int. J. Numer. Meth. Fluids 2007; published online). The two approximations are algebraically equivalent to the MAC scheme, however, they have to be applied on grids that are staggered on a distance h/2 in each direction. This paper also demonstrates that both discretizations allow for the construction of a divergence‐free basis, which yields a linear system with a ‘biharmonic’ conditioning. Both this paper and Kanschat (Int. J. Numer. Meth. Fluids 2007; published online) demonstrate that the LDG framework can be used to generalize some popular finite‐difference schemes to grids that are not parallel to the coordinate axes or that are unstructured. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical simulations of viscous flow problems with complex moving and/or deforming boundaries commonly require the solution of the corresponding fluid equations of motion on unstructured dynamic meshes. In this paper, a systematic investigation of the importance of the choice of the mesh configuration for evaluating the viscous fluxes is performed when the semi‐discrete Navier–Stokes equations are time‐integrated using the popular second‐order implicit backward difference algorithm. The findings are illustrated with the simulation of a laminar viscous flow problem around an oscillating airfoil. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Compact finite difference methods feature high‐order accuracy with smaller stencils and easier application of boundary conditions, and have been employed as an alternative to spectral methods in direct numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is to cancel lower‐order errors by treating spatial Taylor expansions implicitly. Recently, some attention has been paid to conservative compact finite volume methods on staggered grid, but there is a concern about the order of accuracy after replacing cell surface integrals by average values calculated at centres of cell surfaces. Here we introduce a high‐order compact finite difference method on staggered grid, without taking integration by parts. The method is implemented and assessed for an incompressible shear‐driven cavity flow at Re = 103, a temporally periodic flow at Re = 104, and a spatially periodic flow at Re = 104. The results demonstrate the success of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Flows over two tandem cylinders were analysed using the newly developed collocated unstructured computational fluid dynamics (CUCFD) code, which is capable of handling complex geometries. A Reynolds number of 100, based on cylinder diameter, was used to ensure that the flow remained laminar. The validity of the code was tested through comparisons with benchmark solutions for flow in a lid‐friven cavity and flow around a single cylinder. For the tandem cylinder flow, also mesh convergence was demonstrated, to within a couple of percent for the RMS lift coefficient. The mean and fluctuating lift and drag coefficients were recorded for centre‐to‐centre cylinder spacings between 2 and 10 diameters. A critical cylinder spacing was found between 3.75 and 4 diameters. The fluctuating forces jumped appreciably at the critical spacing. It was found that there exists only one reattachment and one separation point on the downstream cylinder for spacings greater than the critical spacing. The mean and the fluctuating surface pressure distributions were compared as a function of the cylinder spacing. The mean and the fluctuating pressures were significantly different between the upstream and the downstream cylinders. These pressures also differed with the cylinder spacing. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The present work is devoted to the study on unsteady flows of two immiscible viscous fluids separated by free moving interface. Our goal is to elaborate a unified strategy for numerical modelling of two‐fluid interfacial flows, having in mind possible interface topology changes (like merger or break‐up) and realistically wide ranges for physical parameters of the problem. The proposed computational approach essentially relies on three basic components: the finite element method for spatial approximation, the operator‐splitting for temporal discretization and the level‐set method for interface representation. We show that the finite element implementation of the level‐set approach brings some additional benefits as compared to the standard, finite difference level‐set realizations. In particular, the use of finite elements permits to localize the interface precisely, without introducing any artificial parameters like the interface thickness; it also allows to maintain the second‐order accuracy of the interface normal, curvature and mass conservation. The operator‐splitting makes it possible to separate all major difficulties of the problem and enables us to implement the equal‐order interpolation for the velocity and pressure. Diverse numerical examples including simulations of bubble dynamics, bifurcating jet flow and Rayleigh–Taylor instability are presented to validate the computational method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号