首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The results of computational fluid dynamics (CFD) simulations in two and three spatial dimensions are compared to pressure measurements and particle image velocimetry (PIV) flow surveys to assess the suitability of numerical models for the simulation of deep dynamic stall experiments carried out on a pitching NACA 23012 airfoil. A sinusoidal pitching motion with a 10° amplitude and a reduced frequency of 0.1 is imposed around two different mean angles of attack of 10° and 15°. The comparison of the airloads curves and of the pressure distribution over the airfoil surface shows that a three-dimensional numerical model can better reproduce the flow structures and the airfoil performance for the deep dynamic stall regime. Also, the vortical structures observed by PIV in the flow field are better captured by the three-dimensional model. This feature highlighted the relevance of three-dimensional effects on the flow field in deep dynamic stall.  相似文献   

2.
合成射流对失速状态下翼型大分离流动控制的试验研究   总被引:1,自引:0,他引:1  
为研究低速状态合成射流在抑制翼型气流分离和推迟失速方面的控制机理, 开展了NACA0021 翼型失速特性射流控制的风洞试验研究. 通过系统性的模型测力、翼型瞬态流场粒子图像测速和边界层速度测定的对比试验, 深入探索了合成射流各参数对翼型失速特性控制效果的影响规律. 试验结果表明射流偏角在翼型升力和失速迎角控制方面的效果对射流动量系数较为敏感: 当动量系数较大时, 近切向射流的控制效果更好. 射流动量系数为0.033 时, 偏角30°的射流使得翼型升力系数峰值提高23.56%, 失速迎角增大5°; 而动量系数较小时, 偏角较大的射流能够获得最佳控制效果. 射流动量系数为0.0026 时, 法向射流对翼型最大升力系数控制效果最好(提高9.2%).   相似文献   

3.
为测量翼型动态失速的非定常涡流场特性,采用3D-PIV 技术,对典型直升机旋翼翼型SC1095 的动态失速流场特性进行测量,发现涡在不同位置处的输运速度不同:位于翼型表面的涡的无量纲速度为0.39,位于尾迹区的涡的无量纲速度为0.55. 利用前缘涡输运速度变化这一特征,改进了经典的翼型动态失速利什曼-贝多斯(Leishman-Beddoes,L-B)模型,将该模型中固定的涡时间常数修正为可以随涡位置变化的时变函数,修正后的模型计算得到翼型法向力峰值相对原L-B 模型提升5%,力矩系数负峰值相对原L-B 模型提升13%,与试验值相比更加吻合,表明修正后的翼型动态失速模型更好地体现了翼型前缘涡的物理特征.  相似文献   

4.
The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer.  相似文献   

5.
针对所设计的三角形涡流发生器开展用于翼型失速流动控制的风洞实验研究,重点讨论涡流发生器几何参数、方向角、安装位置及实验雷诺数等因素对翼型失速流动控制的影响。实验结果表明:涡流发生器作用下,在干净翼失速迎角后能够形成一个升力几乎不随迎角变化的相对稳定的高升力状态,抑制了失速流动的发生,与此同时阻力大幅下降;本文所设计的涡流发生器方向角过大时会削弱翼型失速流动控制的效果;同一涡流发生器作用下雷诺数过大其失速流动控制效果会急剧恶化,第一种涡流发生器控制翼型失速的雷诺数有效范围略宽于第二种涡流发生器。  相似文献   

6.
针对动态失速引起的风力机翼型气动性能恶化的问题,本文基于动网格和滑移网格技术, 开展了大涡模拟数值计算研究,探索了非定常脉冲等离子体的动态流动控制机理. 结果表明,等离子体气动激励能够有效控制翼型动态失速, 改善平均和瞬态气动力,减小力矩负峰值和迟滞环面积. 压力分布在等离子体施加范围内出现了负压"凸起",上翼面吸力峰值明显增大.脉冲频率和占空比这两个非定常控制参数对流动控制影响显著,无因次脉冲频率为1.5时等离子体控制效果较好,占空比为0.8时即可接近连续工作模式下的气动收益. 翼型深失速状态,等离子体促使流动分离位置明显向后缘移动, 抵抗了大尺度动态失速涡的发生,分离涡结构破碎耗散、重新附着, 涡流影响范围减小; 浅失速状态,等离子体激励具有较强的剪切层操纵能力, 诱导了翼型边界层提前转捩,促进了与主流的动量掺混. 等离子体气动激励诱导出前缘附近贴体翼面"涡簇",起到了虚拟气动外形的作用.不同尺度、频域的动态涡结构与等离子体气动激励的非线性、强耦合作用导致了气动力/力矩的谐波振荡.  相似文献   

7.
孙茂  王家禄  连淇祥 《力学学报》1993,25(5):628-631
在尾缘处置氢气泡铂丝,观察了上仰翼型自尾缘流入尾迹的涡层。基于尾涡层及(以往)上翼面分离涡的观察,用涡动力学理论,探讨了动态失速的机理,并解释了新的失速现象。  相似文献   

8.
孙茂  王家禄  连淇祥 《力学学报》1992,24(5):517-521
本文通过在翼型上游和翼表面边界层内放置产生氢气泡的铂丝的方法,清楚地显示了上仰翼型分离剪切层的结构。揭示了在不同的翼型转动角速度范围内,存在三种分离流结构。研究了失速涡,剪切涡及起动涡随时间的演变,它们之间的相互作用和转动角速度等参数的影响,分离剪切层的流动显示结果,结合翼型上气动力与流场中涡量矩的关系的理论,定性地解释了上仰翼型产生非定常高升力的原因。  相似文献   

9.
以S809翼型为研究对象,用CFD数值模拟计算的方法研究了在失速条件下,风力机翼型上下表面同时开缝的被动控制策略对翼型空气动力学特性的影响。采用基于速度耦合的SIMPLEC算法进行数值模拟,将四种常用的湍流模型(Spalart-Allmaras、k-e、k-w、k-w-SST)在12°和24°攻角下的计算结果和实验数据对比,得出了最优于翼型计算的湍流模型为k-w-SST。分析了缝隙位置、宽度和斜率对翼型气动性能的影响。结果表明:当开缝位置位于分离点附近时,翼型气动性能最优;当缝隙宽度为弦长的2%时,翼型气动性能最优;当缝隙和弦线的夹角为75°时,翼型气动性能最优,且在攻角超过24°时开缝对翼型的气动性能有不利影响。  相似文献   

10.
The Chimera technique for moving grids is used to take into account nonhomogeneous unsteady inflow conditions in the simulation of aerodynamic flows. The method is applied to simulate the transport of a large‐scale vortex by a mean velocity field over a large distance, where it finally interacts with an airfoil. The Chimera approach allows one to resolve the vortex on a fine grid, whereas the unstructured background grid covering most of the computational domain can be much coarser. This method shows the same low numerical dissipation as a simulation on a globally fine grid. Several precursor tests are performed with a finite modified analytical Lamb–Oseen type vortex to study the influence of spatial and temporal resolution and the employed numerical scheme. Then, the interaction of an analytical vortex with a NACA0012 airfoil and with an ONERA‐A airfoil near stall is studied. Finally, a realistic vortex is generated by a ramping airfoil and is transported on a moving Chimera block and then interacts with a two‐element airfoil, which allows one to simulate a typical setup for a gust generator in aerodynamic facilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The scope of this work is to demonstrate the applicability of an eddy resolving turbulence model in a turbomachinery configuration. The model combines the Large Eddy Simulation (LES) and the Reynolds Averaged Navier Stokes (RANS) approach. The point of interest of the present investigation is the unsteady rotating stall phenomenon occurring at low part load conditions. Since RANS turbulence models often fail to predict separation correctly, a LES like model is expected to give superior results. In this investigation the scale-adaptive simulation (SAS) model is used. This model avoids the grid dependence appearing in the Detached Eddy Simulation (DES) modelling strategy. The simulations are validated with transient measurement data. The present results demonstrate, that both models are able to predict the major stall frequency at part load. Results are similar for URANS and SAS, with advantages in predicting minor stall frequencies for the turbulence resolving model.  相似文献   

12.
Due to the damage caused by stall flutter, the investigation and modeling of the flow over a wind turbine airfoil at high angles of attack are essential. Dynamic mode decomposition (DMD) and dynamic mode decomposition with control (DMDc) are used to analyze unsteady flow and identify the intrinsic dynamics. The DMDc algorithm is found to have an identification problem when the spatial dimension of the training data is larger than the number of snapshots. IDMDc, a variant algorithm based on reduced dimension data, is introduced to identify the precise intrinsic dynamics. DMD, DMDc and IDMDc are all used to decompose the data for unsteady flow over the S809 airfoil that are obtained by numerical simulations. The DMD results show that the dominant feature of a static airfoil is the adjacent shedding vortices in the wake. For an oscillating airfoil, the DMDc results may fail to consider the effect of the input and have an identification problem. IDMDc can alleviate this problem. The dominant IDMDc modes show that the intrinsic flow for the oscillating case is similar to the unsteady flow over the static airfoil. Moreover, the input–output model identified by IDMDc can give better predictions for different oscillating cases than the identified DMDc model.  相似文献   

13.
以数值计算为手段,分析了带涡襟翼的翼型的流场特性,分别对迎角及扰流板偏角对翼型气动性能的影响做了分析。结果表明,在小迎角来流情况下,保持迎角不变,涡襟翼偏转角度越大,升力越小,阻力越大,呈现较好的线性关系。在大迎角情况下,绕翼型的流动发生分离,通过适当控制涡襟翼的偏转角度,能够有效的改善翼型的失速特性,从而达到流动控制的目的,迎角越大,涡襟翼所需偏转的角度越大。  相似文献   

14.
等速上仰翼型动态失速现象研究   总被引:9,自引:0,他引:9  
白鹏  崔尔杰  周伟江  李锋 《力学学报》2004,36(5):569-576
翼型大迎角绕流的静态失速将造成升力突降和气动性能急剧恶化,但利用非定常运动所产生 的动态失速效应,可以大大地延缓气流分离和失速现象的发生. 采用Rogers发 展的双时间步Roe格式,求解拟压缩性修正不可压N-S方程. 数值模拟了低雷诺数 ($Re=4.8 \times 10^{4}$)条件下NACA0015翼型作等速上仰($\alpha =0^{\circ} \sim 60^{\circ}$)的动态失速过程,同Walker的试验结果比 较,验证了计算结果的正确性. 研究了该过程中主涡、二次涡和三次涡的发展,升 力系数随攻角变化,以及不同上仰速度对动态失速效应所造成的影响.  相似文献   

15.
The prediction of the aerodynamic performance of pitching airfoils in stall conditions is considered in the context of strong viscous–inviscid interaction modelling. The aim of the work is to demonstrate the capabilities of a low‐cost dynamic stall model well suited for engineering applications. The model is formulated on the basis of a standard panel method combined with a vortex blob approximation of the wake. The development of the boundary layer over the airfoil and the evolution of the shear layer in the wake are taken into account by means of strong viscous–inviscid interaction coupling. To this end a transpiration layer is added to the inviscid formulation which represents the displacement effect viscosity results in the flow while the non‐linear coupled equations are solved simultaneously. Separation is modelled by introducing a second wake originating from the separation point (‘double‐wake’ concept) which is provided as part of the boundary layer solution. The theoretical presentation of the model is supported with favourable comparisons to four sets of wind tunnel measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces’ behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity. However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.  相似文献   

17.
Flow past multi-element airfoil is studied via two-dimensional numerical simulations. The incompressible Reynolds averaged Navier–Stokes equations, in primitive variables, are solved using a stabilized finite element formulation. The Spalart–Allmaras and Baldwin–Lomax models are employed for turbulence closure. The implementation of the Spalart–Allmaras model is verified by computing flow over a flat plate with a specified trip location. Good agreement is seen between the results obtained with the two models for flow past a NACA 0012 airfoil at 5° angle of attack. Results for the multi-element airfoil, with the two turbulence models, are compared with experiments for various angles of attack. In general, the pressure distribution, from both the models matches quite well with the experimental results. However, at larger angles of attack, the computational results overpredict the suction peak on the slat. The velocity profiles from the Baldwin–Lomax model are, in general, more diffused compared to those from the Spalart–Allmaras model. The agreement between the computed and experimental results is not too good in the flap region for large angles of attack. Both the models are unable to predict the stall; the flow remains attached even for relatively large angles of attack. Consequently, the lift coefficient is over predicted at large α by the computations. Overall, compared to the Baldwin–Lomax model, the predictions from the Spalart–Allmaras model are closer to experimental measurements.  相似文献   

18.
Unsteady Reynolds averaged Navier–Stokes (URANS) and detached eddy simulation (DES) related approaches are considered for high angle of attack NACA0012 airfoil, wing–flap, generic tilt‐rotor airfoil and double‐delta geometry flows. These are all found to be problem flows for URANS models. For DES fifth‐order upwinding is found too dissipative and the use of, for high speed flows, instability prone centred differencing essential. An existing hybrid ILES–RANS modelling approach, intended for flexible geometry, relatively high numerical dissipation codes is tested along with differential wall distance algorithms. The former gives promising results. The standard turbulence modelling approaches are found to give perhaps a surprising results variation. Results suggest that for the problem flows, the explicit algebraic stress and Menter shear stress transport (SST) URANS models are more accurate than the economical Spalart–Allmaras (SA). However, the explicit algebraic stress model (EASM) in its k–ε form is impractically expensive to converge. Here, SA predictions lack a rotation correction term and this is likely to improve these results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
N-S方程数值研究翼型对微型扑翼气动特性的影响   总被引:1,自引:0,他引:1  
首先基于嵌套网格发展了一套适用于三维扑翼研究的非定常雷诺平均Navier-Stokes(RANS)方程数值模拟方法.为了解决微型扑翼在低马赫数下的收敛问题,使用了预处理方法,湍流模型为BL模型.在该方法的基础上,保持状态参数和扑翼表面形状一定的情况下,分别研究了一系列不同厚度、不同弯度的翼型对于微型扑翼气动特性的影响....  相似文献   

20.
风力机叶片翼型动态试验技术研究   总被引:9,自引:7,他引:2  
风力机叶片动态振荡过程往往伴随着俯仰和横摆同时进行, 以前对许多动态问题不清楚的阶段, 工程上不惜以增加叶片重量为代价而采用偏安全的设计, 通常忽略横摆振荡的影响; 大型风力机设计对获取翼型更加全面、准确的动态载荷提出了更高要求, 研究横摆振荡对翼型动态气动特性的影响规律具有重要意义. 本文首次开展翼型横摆振荡动态风洞试验研究, 采用“电子凸轮”技术代替机械凸轮实现了振荡频率和振荡角度的无级变化, 基于设计的电子外触发装置实现了对动态流场的实时测量, 实现了风洞来流、模型角位移和动态压力数据的同步采集, 分别开展了翼型静态测压、俯仰/横摆动态测压、粒子图像测速和荧光丝线等试验研究, 试验结果准度较高、规律合理; 分析了动态试验洞壁干扰影响机制. 研究表明, 横摆振荡翼型的气动曲线也存在明显迟滞效应; 随着振荡频率升高, 翼型俯仰和横摆振荡下的气动迟滞性均增强; 翼型俯仰振荡正行程的动态失速涡破裂有所延迟; 洞壁与模型端部交界处的强三维效应对翼型压力分布影响较大; 建立的横摆振荡试验技术可为风力机动态掠效应的研究提供技术支撑.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号