首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two chemosensors 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐(2‐phenylhydrazone), [I1] and 4H‐1‐benzopyran‐3‐carboxaldehyde, 4‐oxo‐, 3‐[2‐(2,4‐dinitrophenyl)hydrazone], [I2] with hydrazone‐NH group as binding site have been shown excellent selectivity for arsenite ion. It is confirmed by the UV‐vis titration that I2 is more selective than I1. The performance of the coated graphite electrode (CGE) was found to be better than polymeric membrane electrode (PME) in terms of linear range of 4.89×10?7–1.0×10?1 mol L?1, low detection limit of 8.31×10?8 mol L?1 and short response time. The proposed sensors were also used to determine the arsenite ion in different water samples.  相似文献   

2.
In this work, the new polyamine bisnaphthalimidopropyl‐4,4’‐diaminodiphenylmethane is proposed as a new ionophore for perchlorate potentiometric sensors. The optimal formulation for the membrane comprised of 12 mmol kg?1 of the ionophore, and 68 % (w/w) of 2‐nitrophenyl phenyl ether as plasticizer and 31 % (w/w) of high molecular weight PVC. The sensors were soaked in water for a week to allow leakage of anionic impurities and for one day in a perchlorate solution (10?4 mol L?1) to improve reproducibility due to its first usage. The stability constant for the ionophore‐perchlorate association in the membrane, log βIL1=3.18±0.04, ensured a performance characterized by the slope of 54.1 (±0.7) mV dec?1 to perchlorate solutions with concentrations between 1.24×10?7 and 1.00×10?3 mol L?1. The sensors are insensitive to pH between 3.5 to 11.0, they have a practical detection limit of 7.66 (±0.42) ×10?8 mol L?1 and a response time below 60 s for solutions with perchlorate concentrations above 5×10?6 mol L?1. The accuracy of the results was confirmed by the analysis of the contaminant in a certified reference water sample.  相似文献   

3.
《Electroanalysis》2005,17(23):2129-2136
The investigation of the dissolved iron(III)–nitrilotriacetate–hydroxide system in the water solution (I=0.1 mol L?1 in NaClO4; pH 8.0±0.1) using differential pulse cathodic voltammetry, cyclic voltammetry, and sampled direct current (DC) polarography, was carried out on a static mercury drop electrode (SMDE). The dissolved iron(III) ion concentrations varied from 2.68×10?6 to 6×10?4 mol L?1 and nitrilotriacetate concentrations were 1×10?4 and 5×10?4 mol L?1. By deconvoluting of the overlapped reduction voltammetric peaks using Fourier transformation, four relatively stable, dissolved iron(III) complex species were characterized, as follows: [Fe(NTA)2]3?, mixed ligand complexes [FeOHNTA]? and [Fe(OH)2NTA]2?, showing a one‐electron quasireversible reduction, and binuclear diiron(III) complex [NTAFeOFeNTA]2?, detected above 4×10?4 mol L?1 of the added iron(III) ions, showing a one‐electron irreversible reduction character. The calculations with the constants from the literature were done and compared with the potential shifts of the voltammetric peaks. Fitting was obtained by changing the following literature constants: log β2([Fe(NTA)2]3?) from 24 to 27.2, log β1([FeNTA]?) from 8.9 to 9.2, log β2([Fe(NTA)2]4?) from 11.89 to 15.7 and log β2([Fe(OH)2NTA]3?) from 15.63 to 19. The determination of the electrochemical parameters of the mixed ligand complex [FeOHNTA]?, such as: transfer coefficient (α), rate constant (ks) and formal potential (E°') was done using a sampled DC polarography, and found to be 0.46±0.05, 1.0±0.3×10?3 cm s?1, and ?0.154±0.010 V, respectively. Although known previously in the literature, these four species have now for the first time been recorded simultaneously, i.e. proved to exist simultaneously under the given conditions.  相似文献   

4.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

5.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

6.
Metal‐organic frameworks (MOFs) as new classes of proton‐conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton‐conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(μ3‐HPhIDC)(μ2‐C2O4)0.5(H2O))?2 H2O}n (M=Tb ( ZZU‐1 ); Eu ( ZZU‐2 )) (H3PhIDC=2‐phenyl‐1H‐imidazole‐4,5‐dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high‐performance proton conduction and recognition ability for formic acid. Both ZZU‐1 and ZZU‐2 show temperature‐ and humidity‐dependent proton‐conducting characteristics with high conductivities of 8.95×10?4 and 4.63×10?4 S cm‐1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF‐based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10?2 mol L?1 by ZZU‐1 and 2.0×10?2 mol L?1 by ZZU‐2 . Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N‐hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton‐conductive MOFs‐based sensors for detecting formic acid.  相似文献   

7.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

8.
Poly(vinyl chloride) polymeric membrane sensors containing Sn(IV) phthalocyanine dichloride (SnPC) and Co(II) phthalocyanine (CoPC) as novel electroactive materials dispersed in o‐nitrophenyl octylether (o‐NPOE) as a plasticizer are examined potentiometrically with respect to their response toward selenite (SeO32?) ions. Fast Nernstian response for SeO32? ions over the concentration ranges 7.0×10?6–1.0×10?3 and 8.0×10?6–1.0×10?3 mol L?l at pH 3.5–8.5 with lower detection limit of 5.0×10?6 and 8.0×10?6 mol L?1 and calibration slopes of ?25.4 and ?29.7 mV decade?1 are obtained with SnPC and CoPC based membrane sensors, respectively. The proposed sensors reveals by the modified separate solution method (MSSM) a good selectivity over different anions which differ significantly from the classical Hofmeister series. A segmented sandwich membrane method is used to determine complex formation constants of the ionophores in situe in the solvent polymeric sensing membranes. Membrane incorporating CoPC in a tubular flow detector is used in a two channels flow injection set up for continuous monitoring of selenite at a frequency of ca. 50 samples h?1. Direct determination of selenium in pharmaceutical formulations and anodic slime gives results in good agreement with data obtained using standard ICP method.  相似文献   

9.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

10.
Photopolymerization of methyl methacrylate (MMA) was studied at 40°C using a macromolecular C.T. Complex between poly(N-vinyl carbazole) and bromine, expressed in brief as (PNVC–Br2) complex, as the photoinitiator. Initiator exponent was 0.40 for [PNVC–Br2] ≤ 2.5 × 10?3 mol L?1 and practically zero for [PNVC–Br2] > 2.5 × 10?3 mol L?1. Monomer exponent in different diluent systems such as benzene, carbon tetrachloride, and acetone was close to 1.0. Low initiator exponent (<0.5) is explained on the basis of an initiator-dependent termination mechanism, in addition to the usual bimolecular termination. Analysis of kinetic data indicates that the initiator-dependent termination is primarily due to degradative initiator transfer and that due to primary radicals is considered inconsequential in view of monomer exponent being close to unity. The non-ideal termination process assumes over-whelming prominence at high [PNVC–Br2].  相似文献   

11.
In this paper, gold microelectrode array (Au‐MEA) were employed to determination of ethambutol in aqueous medium. Au‐MEA was constructed with an electronic microchip integrated circuit. The standard curve (analytical curve) was constructed for a single microelectrode (ME) in a concentration range of 5.0×10?5 to 2.0×10?3 mol L?1, allowing estimation of both the limit of detection (LOD) (4.73×10?5 mol L?1) and the limit of quantification (LOQ) (1.57×10?4 mol L?1) for ethambutol. When the MEA was utilized, the LOD and LOQ were 1.55×10?7 and 5.18×10?7 mol L?1, respectively. Our results indicated that Au‐MEA can be utilized as amperometric sensors for ethambutol determination in aqueous media.  相似文献   

12.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

13.
Three novel poly vinyl chloride (PVC) ( A ), carbon paste (CP) ( B ), and coated glassy carbon‐MWCNT (CGC) ( C ) salicylate (sal?) sensors based on new synthesized [Co(L2Cl)Cl3(H2O)] ? H2O complex (L2Cl=(1H‐benzimidazol‐2‐ylmethyl)‐N‐(2‐chloro‐phenyl)‐ amine)), o‐nitrophenyloctyl ether as a mediator and tridodecylmethylammonium chloride as a cationic additive were successfully used for determination of sal? in human plasma and pharmaceutical formulations. The sal?‐sensors exhibited enhanced sensitivity with slope of ?63.5, ?60.5 and ?58.9 mV/decade and detection limit of 1.0×10?5, 4.0×10?7, and 1.0×10?6 mol L?1 for A – C sensors respectively. Quantum chemical calculations were carried out by HF and DFT/B3LYP methods to explore and investigate the interaction between the receptor and the different anions. The intermolecular H‐bond created between the uncoordinated C?O of salicylate group and the secondary amino group in the complex is the key factor of the selectivity of the proposed sensor. A linear relation is established between the natural charge on the Co center and the value of the binding energy, where the decrease in positive charge is associated by an increase in the anion binding energy.  相似文献   

14.
Three stochastic sensors based on nanodiamond (nDP) paste modified with α, β, and γ‐cyclodextrin were designed and characterized for pattern recognition of aspartame, acesulfame K and sodium cyclamate in beverages, ketchup, and biological fluids. The linear concentration ranges obtained for acesulfame K (between 1.00×10?10 mol L?1and 1.00×10?3 mol L?1), for aspartame (between 1.00×10?12 mol L?1 and 1.00×10?3 mol L?1) and for sodium cyclamate (between 4.97×10?12 mol L?1 and 4.97×10?3 mol L?1) allow their assay in biological fluids, beverages and ketchup. The lowest limits of quantification were obtained using the stochastic sensor based on γ‐CD/nDP: for acesulfame K 1.00×10?10 mol L?1, for aspartame 1.00×10?12 mol L?1 and for sodium cyclamate 4.97×10?12 mol L?1. All three stochastic sensors revealed very high values of sensitivities. The proposed method was reliable for qualitative and quantitative assay of aspartame, acesulfame K and sodium cyclamate in beverages, ketchup, and in biological fluids such as urine.  相似文献   

15.
《Electroanalysis》2005,17(21):1945-1951
Tin(IV) porphyrins derivatives were used as ionophores for phthalate selective electrodes preparation. The influence of ionophore structure and membrane composition (amount of incorporated ionic sites) on the electrode response, selectivity and long‐term stability were studied. Poly(vinyl chloride) polymeric membranes plasticized with o‐NPOE (o‐nitrophenyloctylether) and containing Sn(IV)‐tetraphenylporphyrin (TPP) dichloride (Sn(IV)[TPP]Cl2) or Sn(IV)‐octaethylporphyrin (OEP) dichloride (Sn(IV)[OEP]Cl2), and in some cases incorporating lipophilic cationic (tetraocthylammonium bromide ‐ TOABr) and anionic (sodium tetraphenylborate – NaTPB and potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate‐KTFPB) additives, were prepared and their potentiometric characteristics compared. Both ionophores are shown to operate via a neutral mechanism, and the addition of 10 mol % of lipophilic quaternary ammonium salt derivative to the membrane is required to achieve optimal electrode performance. The potentiometric units prepared, with Sn(IV)[TPP]Cl2 (Type A) or Sn(IV)[OEP]Cl2 (Type B) without additives, presented a slope of ?52.8 mV dec?1 and ?58.8 mV dec?1 and LLLR of 9.9×10?5 mol L?1 and 9.9×10?6 mol L?1, respectively. The units prepared using the same metalloporphyrins and incorporating 10% mol TOABr presented a slope of ?55.0 mV dec?1 and ?57.8 mV dec?1 and LLLR of 5.0×10?7 mol L?1 and 3.0×10?7 mol L?1. Their analytical usefulness was assessed by potentiometric determinations of phthalate in water and industrial products providing results that presented recoveries of about 100%.  相似文献   

16.
The present work, regarding the determination of ultratrace Os(VIII), Ru(III) and Ir(III) in superficial waters is an interesting example of the possibility to simultaneously, or better sequentially determine each single element in real samples by voltammetry. The method is based on the catalytic current of the Os(VIII)‐ and Ru(III)‐bromate systems by square wave voltammetry and on the Ir(III) determination by square wave catalytic adsorptive stripping voltammetry. 0.5 mol L?1 acetate buffer pH 4.9+7.7×10?2 mol L?1 NaBrO3 and 0.5 mol L?1 acetate buffer pH 4.9+7.7×10?2 mol L?1 NaBrO3+2.3×10?5 mol L?1 cetyltrimethylammonium bromide (CTAB) +0.2 mol L?1 KCl were employed as the supporting electrolytes. The analytical procedure was verified by the analysis of the standard reference materials: Sea Water BCR‐CRM 403 and Fresh Water NIST‐SRM 1643d. For all the elements, the accuracy, expressed as relative error e (%), was satisfactory, being lower than 6 %, while precision as repeatability, expressed as relative standard deviation, sr (%), was generally lower than 5 %. Once set up on the standard reference materials, the analytical procedure was transferred and applied to superficial water sampled in proximity to superhighway and in the Po river mouth area.  相似文献   

17.
A simple, rapid and a highly selective method for direct electrochemical determination of acebutolol hydrochloride (AC) was developed. The developed method was based on the construction of three types of sensors conventional polymer (I), carbon paste (II) and modified carbon nanotubes (MCNTs) carbon paste (III). The fabricated sensors depend mainly on the incorporation of acebutolol hydrochloride with phosphotungstic acid (PTA) forming ion exchange acebutolol‐phosphotungstate (AC‐PT). The performance characteristics of the proposed sensors were studied. The sensors exhibited Nernstian responses (55.6 ± 0.5, 57.14 ± 0.2 and 58.6 ± 0.4 mV mol L?1) at 25 °C over drug concentration ranges (1.0 × 10?6‐1.0 × 10?2, 1.0 × 10?7‐1.0 × 10?2 and 5.0 × 10?8‐1.0 × 10?2 mol L?1 with lower detection limits of (5.0 × 10?7, 5.0 × 10?8 and 2.5 × 10?8 mol L?1 for sensors (I), (II) and (III), respectively. The influence of common and possible interfering species, pharmaceutical additives and some related pharmacological action drugs was investigated using separate solution method and no interference was found. The stability indicating using forced degradation of acebutolol hydrochloride was studied. The standard addition method was used for determination of the investigated drug in its pharmaceutical dosage forms and biological fluids. The results were validated and statistically analysed and compared with those from previously reported methods.  相似文献   

18.
《Electroanalysis》2005,17(24):2246-2253
Coated‐wire (CW) and tubular (Tu) type membrane sensors for creatinine are developed. These consist of creatinine tungstophosphate(CTP), creatinine molybdophosphate (CMP) and creatinine picrolonate (CPC) ion‐pair complexes as electroactive materials dispersed in plasticized poly(vinyl chloride) matrix membranes. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near‐Nernstian response with slopes of 62.9, 58.1, and 55.2 mV decade?1 over the concentration range 1×10?2–5.0×10?6, 1×10?2–7.5×10?5, and 1×10?2?3.1×10?5 mol L?1. The lower detection limits are 0.39, 3.49, and 2.20 μg mL?1 creatinine with CTP, CMP and CPC membrane based sensors plasticized with o‐NPOE, respectively. Tubular and coated wire CTP membrane sensors are incorporated in flow‐through cells and used as detectors for flow injection analysis (FIA) of creatinine. The intrinsic characteristics of the detectors under hydrodynamic mode of operation in a low dispersion manifold are determined and compared with data obtained under static mode of operation. With 10?2 mol L?1 phosphate buffer of pH 4.5 as a carrier solution, the tubular and coated wire CTP detectors exhibit rapid response of 58.9 and 50.7 mV decade?1 over the concentration range 1×10?2–1×10?5 mol L?1 and detection limits of 0.39 μg mL?1 and 0.85 μg mL?1, respectively. Validation of the assay methods with the proposed sensors by measuring the lower detection limit, range, accuracy, precision, repeatability and between‐day‐variability reveals good performance characteristics confirming applicability for continuous determination of creatinine. The sensors are used for determining creatinine in human blood serum at an input rate of 40 samples per hour. No interferences are caused by creatine, most common anions, cations and organic species normally present in biological fluids. The results favorably compare with data obtained using the standard spectrophotometric method.  相似文献   

19.
Miniaturized potentiometric membrane sensors for quinine incorporated with molecular imprinted polymer (MIP) were synthesized and implemented. Planar PVC based polymeric membrane sensors containing quinine‐methacrylic and/or acrylic acid‐ethylene glycol methacrylate were dispensed into anisotropically etched wells on polyimide wafers. The determination of quinine was carried out in acidic solution at pH 6, where positively charged species predominated prevalently. The suggested miniaturized planner sensors exhibited marked selectivity, sensitivity, long‐term stability and reproducibility. At their optimum conditions, the sensors displayed wide concentration ranges of 4.0×10?6–1.0×10?2mol L?1 and 1.0×10?5–1.0×10?2 mol L?1 with slopes of about 61.3–55.7 mV decade?1; respectively. Sensors exhibit detection limits of 1.2×10?6 and 8.2×10?6 mol L?1 upon the use of methacrylic and acrylic acid monomers in the imprinted polymer, respectively. Validation of the assay method according to the quality assurance standards (range, within‐day repeatability, between‐day variability, standard deviation, accuracy, and good performance characteristics) which could assure good reliable novel sensors for quinine estimation was justified. Application of the proposed flow‐through assay method for routine determination of quinine in soft drinks was assayed and the results compared favorably with data obtained by the standard fluorimetric method.  相似文献   

20.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号