首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

2.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

3.
4.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

5.
The structure of [Co2(μ‐OH)2(μ‐OAc)(OAc)2(dipyam)2]AcO · EtOH ( 1 ) has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as a “di(μ‐hydroxo)(μ‐acetato)dicobalt(III)” core with chelating 2, 2′‐dipyridylamine and monodentate acetate ligands. The coordination polyhedron around each cobalt atom is a distorted octahedral. The dimers are linked in the crystal by N‐H···Oionic AcO and C‐H···Omonodentate AcO hydrogen bonds. Spectroscopic data are also presented.  相似文献   

6.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

7.
8.
(PPh4)2[Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]2 – a Rhenium(VII) Complex with a Nitrido, a Dinitridosulfato(II), and a Rhena‐3,5‐dithia‐2,4,6‐triazino Function The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals, which were suitable for a crystal structure determination. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[Cl2ReVII(N3S2)(μ‐NSN)(μ‐N≡ReVIICl3)]2 ( 1 ): Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1280.8(2), b = 1017.5(1), c = 2467.8(3) pm, β = 95.04(1)°, R = 0.049. The complex anion of 1 consists of a planar ReN3S2‐heterocycle which is connected with the second rhenium atom by a μ‐nitrido bridge as well as by a μ‐dinitridosulfato(II) ligand to form a planar Re2(N)(NSN) six‐membered heterocycle. This [Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)] unit dimerizes via one of the N‐atoms of the (NSN)4– ligand to give a centrosymmetric Re2N2 four‐membered ring.  相似文献   

9.
Molybdenum and Tungsten Complexes with MNS Sequences. Crystal Structures of [MoCl3(N3S2)(1,4‐dioxane)2] and [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 The cyclo‐thiazeno complexes [Cl3MNSNSN]2 of molybdenum and tungsten react with 1,4‐dioxane in dichloromethane suspension to give the binuclear donor‐acceptor complexes [μ‐(1,4‐dioxane){MCl3(N3S2)}2] which are characterized by IR spectroscopy. With excess 1,4‐dioxane the molybdenum compound forms the complex [MoCl3(N3S2)(1,4‐dioxane)2] in which, according to the crystal structure determination, one of the dioxane molecules coordinates at the molybdenum atom, the other one at one of the sulfur atoms of the cyclo‐thiazeno ring. The μ‐(NSN2–) complex [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 has been obtained by the reaction of [MoN(OCMe3)3] with trithiazyle chloride in carbontetrachloride solution. According to the crystal structure determination this compound forms centrosymmetric dimeric molecules via two of the nitrogen atoms of two of the μ‐(NSN) groups to give a Mo2N2 fourmembered ring. [MoCl3(N3S2)(1,4‐dioxane)2]: Space group P21/c, Z = 4, lattice dimensions at –70 °C: a = 1522.9(2); b = 990.3(1); c = 1161.7(1) pm; β = 106.31(1)°, R1 = 0.0317. [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 · 4 CCl4: Space group P21/c, Z = 2, lattice dimensions at –83 °C: a = 1216.7(1); b = 2193.1(2); c = 1321.8(1) pm; β = 98.23(1)°; R1 = 0.0507.  相似文献   

10.
11.
Treatment of Pd(PPh3)4 with 2‐bromo‐3‐hydroxypyridine [C5H3N(OH)Br] and 3‐amino‐2‐bromopyridine [C5H3N(NH2)Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C5H3N(OH)}(Br)], 2 and [Pd(PPh3)21‐C5H3N(NH2)}(Br)], 3 , by substituting two triphenylphosphine ligands, respectively. In dichloromethane solution of complexes 2 and 3 at ambient temperature for 3 days, it undergo displacement of the triphenylphosphine ligand to form the dipalladium complexes [Pd(PPh3)Br]2{μ,η2‐C5H3N(OH)}2, 4 and [Pd(PPh3)Br]2{μ,η2‐C5H3N(NH2)}2, 5 , in which the two 3‐hydroxypyridine and 3‐aminopyridine ligands coordinated through carbon to one metal center and bridging the other metal through nitrogen atom, respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

12.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

13.
(PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] – a Nitrido‐Thionitrosyl‐Dinitridosulfato‐Complex of Rhenium The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with excess N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals after recrystallisation from acetonitrile/THF solutions. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] ( 1 ): Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 1024.1(1), b = 2350.2(1), c = 2315.4(2) pm, β = 94.09(1)°, R1 = 0.0403. In the complex anion of 1 the rhenium atoms are connected by an asymmetric Re≡N–Re bridge as well as by a (NSN)4–‐bridge to form a planar Re2N(NSN) six‐membered heterocycle. Both rhenium atoms are coordinated by three chlorine atoms, one of them by a thionitrosyl ligand, the other one by the oxygen atom of a thf molecule.  相似文献   

14.
Synthesis and Characterization of [Zn{Si(NMe2)2(NHCMe3)(NCMe3)}(μ‐NC5H4)]2, a Molecular Single Source Precursor for ZnSiN2 For an application as single source precursor for ZnSiN2 the siladiazazinca cyclo butane [Zn{Si(NMe2)2(NHCMe3)(NCMe3)}(μ‐NC5H4)]2has been synthesised for the first time from Si(NMe2)2(NLi t‐Butyl)2 and ZnCl2(NC5H5)2. It has been characterized by single crystal structure analysis (P1, a = 870.5(3) pm, b = 903.8(3) pm, c = 1530.6(4) pm, α = 96.982(5)°, β = 106.501(5)°, γ = 104.729(5)°). The CP‐MAS‐NMR data for the nuclei 13C, 15N and 29Si are reported. ZnSiN2 was prepared by thermal decomposition of the precursor molecule and characterized by elemental analysis, EDX, IR spectroscopy and thermal analysis. The crystal structure was determined (X‐ray powder diffraction data, profile matching: P63mc, a = 315.33(1) pm, c = 508.07(2) pm, RB = 4.87). The thermal behaviour of the precursor molecule, the preparation of polymers by linking with NH3 and the decomposition of the polymers in an argon or NH3 stream were investigated.  相似文献   

15.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis.  相似文献   

16.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

17.
A new rarely reported ZnII mixed‐polypyridine coordination polymer with both rigid and flexible spacers, {[Zn(bpp)2(μ‐4,4′‐bipy)(H2O)2](ClO4)2 · H2O}n ( 1 ), has been synthesized and characterized by elemental analysis, IR‐, 1H NMR‐, 13C NMR spectroscopy and single‐crystal X‐ray diffraction. The thermal stability of compound 1 was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The single‐crystal X‐ray structure of 1 shows that the complex has been formed from a 1D polymer as a result of bridging by the 4,4′‐bipy ligands. Solution and solid‐state luminescent spectra of the compound 1 indicate intense fluorescent emissions at ca. 353.6 and 468.8 nm, respectively. Removal of the interstitial water guest molecules results in a loss of crystallinity, but exposure to water vapor reestablishes the original structure, thus constituting 1 as a third‐generation porous framework.  相似文献   

18.
Synthesis of Mixed Chalcogenido‐Bridged Dirhenium Complexes of the Type Re2(μ‐ER)(μ‐E′R′)(CO)8 (E, E′ = S, Se, Te; R, R′ = org. Residue) Hydrido sulfido bridged complexes Re2(μ‐H)(μ‐SR)(CO)8 (R = Ph, naph, Cy) react with the base DBU to give the salts [DBUH][Re2(μ‐SR)(CO)8]. Upon addition of electrophiles R′E′Br (E′R = SPh, SePh, TePh) to the in situ prepared salts mixed chalcogenido bridged complexes Re2(μ‐SR)(μ‐E′R′)(CO)8 were formed. The structures of the new compounds Re2(μ‐SCy)(μ‐SePh)(CO)8 and Re2(μ‐Snaph)(μ‐TePh)(CO)8 were determined by single crystal X‐ray analyses. For the preparation of analogous selenido tellurido bridged complexes Re2(μ‐SePh)(μ‐TeR)(CO)8 the novel hydrido selenido bridged complex Re2(μ‐H)(μ‐SePh)(CO)8 was prepared from Re2(CO)8(NCMe)2 and PhSeH. Its structure was determined by single crystal X‐ray analysis. Subsequent deprotonation with DBU gave in situ [DBUH][Re2(μ‐SePh)(CO)8] which upon addition of RTeBr (R = Ph, Bun, But) formed the desired complexes Re2(μ‐SePh)(μ‐TeR)(CO)8. The reaction with ButTeBr also yielded the novel spirocyclic complex (μ4‐Te){Re2(μ‐SePh)(CO)8}2 in low amounts. It was identified by single crystal X‐ray analysis. Re2(μ‐SePh)(μ‐TeBut)(CO)8 is oxidised in chloroform in the presence of air to give the novel complex (μ‐Te–Te‐μ){Re2(μ‐SePh)(CO)8}2. All mixed chalcogenido bridged dirhenium complexes were proved to be dynamic in solution by 13C NMR spectroscopy. The dynamic behaviour is based on the fast and permanent inversion of the sulfido and selenido bridges. The tellurido bridges are rigid on the time scale of 13C NMR spectroscopy.  相似文献   

19.
20.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号