首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We consider a nonequilibrium statistical system formed by many classical non‐relativistic particles of opposite electric charges (plasma) and by the classical dynamical electromagnetic (EM) field. The charges interact with one another directly through instantaneous Coulomb potentials and with the dynamical degrees of freedom of the transverse EM field. The system may also be subject to external influences of: i) either static, but spatially inhomogeneous, electric and magnetic fields (case 1)), or ii) weak distributions of electric charges and currents (case 2)). The particles and the dynamical EM field are described, for any time t > 0, by the classical phase‐space probability distribution functional (CPSPDF) f and, at the initial time (t = 0), by the initial CPSPDF fin. The CPSPDF f and fin, multiplied by suitable Hermite polynomials (for particles and field) and integrated over all canonical momenta, yield new moments. The Liouville equation and fin imply a new nonequilibrium linear infinite hierarchy for the moments. In case 1), fin describes local equilibrium but global nonequilibrium, and we propose a long‐time approximation in the hierarchy, which introduces irreversibility and relaxation towards global thermal equilibrium. In case 2), the statistical system, having been at global thermal equilibrium, without external influences, for t ≤ 0, is subject to weak external charge‐current distributions: then, new hierarchies for moments and their long‐time behaviours are discussed in outline. As examples, approximate mean‐field (Vlasov) approximations are treated for both cases 1) and 2).  相似文献   

2.
G.K. Er 《Annalen der Physik》2011,523(3):247-258
In this paper, a new methodology is formulated for solving the reduced Fokker‐Planck (FP) equations in high dimensions based on the idea that the state space of large‐scale nonlinear stochastic dynamic system is split into two subspaces. The FP equation relevant to the nonlinear stochastic dynamic system is then integrated over one of the subspaces. The FP equation for the joint probability density function of the state variables in another subspace is formulated with some techniques. Therefore, the FP equation in high‐dimensional state space is reduced to some FP equations in low‐dimensional state spaces, which are solvable with exponential polynomial closure method. Numerical results are presented and compared with the results from Monte Carlo simulation and those from equivalent linearization to show the effectiveness of the presented solution procedure. It attempts to provide an analytical tool for the probabilistic solutions of the nonlinear stochastic dynamics systems arising from statistical mechanics and other areas of science and engineering.  相似文献   

3.
Anomalous diffusion is one of the most ubiquitous phenomena in nature, and it is present in a wide variety of physical situations, for instance, transport of fluid in porous media, diffusion of plasma, diffusion at liquid surfaces, etc. The fractional approach proved to be highly effective in a rich variety of scenarios such as continuous time random walk models, generalized Langevin equations, or the generalized master equation. To investigate the subdiffusion of anomalous diffusion, it would be useful to study a time fractional Fokker–Planck equation. In this paper, firstly the time fractional, the sense of Riemann–Liouville derivative, Fokker–Planck equation is transformed into a time fractional ordinary differential equation (FODE) in the sense of Caputo derivative by discretizing the spatial derivatives and using the properties of Riemann–Liouville derivative and Caputo derivative. Then combining the predictor–corrector approach with the method of lines, the algorithm is designed for numerically solving FODE with the numerical error O(kmin{1+2α,2})+O(h2), and the corresponding stability condition is got. The effectiveness of this numerical algorithm is evaluated by comparing its numerical results for α=1.0 with the ones of directly discretizing classical Fokker–Planck equation, some numerical results for time fractional Fokker–Planck equation with several different fractional orders are demonstrated and compared with each other, moreover for α=0.8 the convergent order in space is confirmed and the numerical results with different time step sizes are shown.  相似文献   

4.
Fluorescent members of the 4, 4‐difluoro‐4‐bora‐3a, 4a‐diaza‐s‐indacene (BODIPY) family are widely used for a range of markers, dyes, and sensors. The capacity to substitute the basic framework is an attractive feature permitting a range of differently substituted materials to be formed. New isomeric BODIPYs, o‐, m‐, and p‐8‐[R‐C6H4]‐BODIPY (R = CH2OH, 2a (o), 2b (m), 2c (p); R = OMe, 3a (o), 3b (m), 3c (p)), have been synthesized and characterized by nuclear magnetic resonance, absorbance and emission spectroscopy, and single crystal X‐ray diffraction. The o‐isomers have a very high quantum yield emission in non‐polar solvents, while the m‐ and p‐ analogs showed weak fluorescence under the same conditions. Spectroscopic analysis, as well as X‐ray structural characterization, suggested that substitution in the ortho‐position of the phenyl ring is sufficient to increase the steric hindrance and hence impede the rotation of the phenyl moiety about the 8C‐C axis, thereby favoring radiative compared to non‐radiative relaxation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, non‐linear propagation of ingoing and outgoing electrostatic waves on the ion time scale in an unmagnetized, non‐relativistic electron‐ion (ei) plasma in the presence of warm ions, ion kinematic viscosity, and trapped Maxwellian electrons was examined in a non‐planar geometry. In the weak non‐linearity limit, modified soliton and shock equations were derived with the inclusion of electron trapping in cylindrical and spherical geometries. The finite difference method was used to solve all these equations in the non‐planar geometries using the planar versions of these equations as an initial input. The results were compared with their counterparts with quadratic non‐linearity and the main differences were expounded. It was shown that the spatio‐temporal scales over which the shocks form for the non‐planar trapped Burgers equation are much shorter by comparison with the shocks admitted by the non‐planar trapped Korteweg de Vries Burgers equation. It was also found that unlike their non‐linear shock counterparts, the solitary structures admitted by the non‐planar trapped Korteweg de Vries equation exhibit a phase shift.  相似文献   

6.
We investigate the D‐dimensional Klein‐Gordon equation in the presence of both Coulomb and Cornell potentials by quasi‐exact methodology. The Coulomb potential yields a degenerate result as the dimension increases, i.e. the quantum number l plays no role in the energy relation. For the Cornell potential, however, the behavior is different and no degeneracy exists. Closed form of eigenfunctions is reported and the energy behavior for different states is numerically discussed.  相似文献   

7.
We present in total fifteen potentials for which the stationary Klein‐Gordon equation is solvable in terms of the confluent Heun functions. Because of the symmetry of the confluent Heun equation with respect to the transposition of its regular singularities, only nine of the potentials are independent. Four of these independent potentials are five‐parametric. One of them possesses a four‐parametric ordinary hypergeometric sub‐potential, another one possesses a four‐parametric confluent hypergeometric sub‐potential, and one potential possesses four‐parametric sub‐potentials of both hypergeometric types. The fourth five‐parametric potential has a three‐parametric confluent hypergeometric sub‐potential, which is, however, only conditionally integrable. The remaining five independent Heun potentials are four‐parametric and have solutions only in terms of irreducible confluent Heun functions.

  相似文献   


8.
We find that the sextic nonlinear Schrödinger (NLS) equation admits breather‐to‐soliton transitions. With the Darboux transformation, analytic breather solutions with imaginary eigenvalues up to the second order are explicitly presented. The condition for breather‐to‐soliton transitions is explicitly presented and several examples of transitions are shown. Interestingly, we show that the sextic NLS equation admits not only the breather‐to‐bright‐soliton transitions but also the breather‐to‐dark‐soliton transitions. We also show the interactions between two solitons on the constant backgrounds, as well as between breather and soliton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号