首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A self‐healable gas barrier nanocoating, which is fabricated by alternate deposition of polyethyleneimine (PEI) and polyacrylic acid (PAA) polyelectrolytes, is demonstrated in this study. This multilayer film, with high elastic modulus, high glass transition temperature, and small free volume, has been shown to be a super oxygen gas barrier. An 8‐bilayer PEI/PAA multilayer assembly (≈700 nm thick) exhibits an oxygen transmission rate (OTR) undetectable to commercial instrumentation (<0.005 cc (m−2 d−1 atm−1)). The barrier property of PEI/PAA nanocoating is lost after a moderate amount of stretching due to its rigidity, which is then completely restored after high humidity exposure, therefore achieving a healing efficiency of 100%. The OTR of the multilayer nanocoating remains below the detection limit after ten stretching‐healing cycles, which proves this healing process to be highly robust. The high oxygen barrier and self‐healing behavior of this polymer multilayer nanocoating makes it ideal for packaging (food, electronics, and pharmaceutical) and gas separation applications.

  相似文献   


2.
Poly[(D ,L ‐lactide)‐co‐glycolide] nanoparticles coated with polyethyleneimine on their surface were prepared by an emulsification‐solvent evaporation method and subsequently surface modified by LBL assembly. The assembly of poly(acrylic acid) and polyethyleneimine on a planar substrate and on the PLGA nanoparticles was monitored by QCM‐D, ζ‐potential, flow cytometry and TEM. Carboxylic and amino groups in the multilayers were crosslinked by carbodiimide condensation, which was also later used to graft poly(ethylene glycol) (PEG). Rhodamine 6G, 5(6)‐carboxyfluorescein and fluorescein were incorporated into the nanoparticles and their release profiles were recorded at 60 °C and at 37 °C for rhodamine 6G, for nanoparticles with a multilayer coating, and those that were crosslinked and grafted with PEG.

  相似文献   


3.
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer‐by‐layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30‐bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water‐based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale.

  相似文献   


4.
Virtually transparent films of Aeroxide TiO2 P25 were fabricated via layer‐by‐layer assembly with sodium poly(styrene sulfonate). Nanoscale films are formed on model surfaces for characterization or inside of cylindrical reactors for investigating the catalytic properties. Films are fairly homogeneous and smooth over large areas and show different optical interference colors depending on film thickness. The application‐relevant photocatalytic performance of such films toward on‐flow degradation of hydrogen sulfide under UV‐A irradiation was investigated. Scanning electron microscopy reveals a nanoporous structure allowing for the permeation of gas. Consequently, the catalytic efficiency of the films increases with increasing film thickness retaining a considerable activity of the corresponding nanoparticle powder. Scheme 1 depicts in a general way the functionalized reactor and the principle of the measurement.  相似文献   

5.
Layer‐by‐layer (LBL) assembly is a versatile nanofabrication technique, and investigation of its kinetics is essential for understanding the assembly mechanism and optimizing the assembly procedure. In this work, the LBL assembly of polyelectrolyte and nanoparticles were monitored in situ by capillary electrophoresis (CE) for the first time. The assembly of poly(diallyldimethylammonium chloride) (PDDA), and gold nanoparticles (AuNPs) on capillary walls causes surface‐charge neutralization and resaturation, and thus yields synchronous changes in the electroosmotic flow (EOF). The EOF data show that formation of multilayers follows first‐order adsorption kinetics. On the basis of the fit results, influencing factors, including number of layers, concentration of materials, flow rate, and size of AuNPs, were investigated. The stability and robustness of the assembled coatings were also characterized by CE. It was found that degradation of PDDA layers follows first‐order chemical kinetics, while desorption of AuNPs takes place in a disorderly manner. The substrate strongly affects assembly of the underlying layer, while this effect is rapidly screened with increasing number of layers. Furthermore, we demonstrate that the EOF measuring step does not disturb LBL assembly, and the proposed method is reliable and rugged. This work not only studies in detail the LBL adsorption/desorption process of polyelectrolyte and nanoparticles, but also offers an alternative tool for monitoring multilayer buildup. It may also reveal the potential of CE in fields other than analytical separation.  相似文献   

6.
Responsive polyelectrolyte multilayers (PEMs) of poly(diallyl dimethyl ammonium chloride) (PDADMAC) and poly(styrene sodium sulfonate) (PSS) with thicknesses between 350 and 400 nm for 11 deposited polyelectrolyte layers were fabricated assembling the polyelectrolytes at 3 M NaCl. When the 3 M NaCl bulk solution is replaced by water, the PEMs release water, approximately a 46% of the total mass, and experience a thickness reduction of more than 200 nm. Changes in thickness and water content are fully reversible. The film recovers its original thickness and water content when it is exposed again to a 3 M NaCl solution. A responsive polymer film is achieved with the capability of swelling at high ionic strength and collapsing in water with variations in thickness of hundred of nanometers.  相似文献   

7.
A series of nanoparticles is prepared via layer‐by‐layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery.

  相似文献   


8.
A polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core‐shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell‐embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS‐b‐P2VP hybrid NPs is confirmed by transmission electron microscopy, energy‐dispersive X‐ray, and UV‐Vis absorption.

  相似文献   


9.
10.
Chitosan (CS) was chosen for dispersing multi‐wall carbon nanotubes (MWNTs) to form a stable CS‐MWNTs composite, which was first coated on the surface of a glassy carbon electrode to provide a containing amino groups interface for assembling colloidal gold nanoparticles (GNPs), followed by the adsorption of hemoglobin (Hb). Repeating the assembly step of GNPs and Hb resulted in {Hb/GNPs}n multilayers. The assembly of GNPs onto CS‐MWNTs composites was confirmed by transmission electron microscopy. The consecutive growth of {Hb/GNPs}n multilayers was confirmed by cyclic voltammetry and UV‐vis absorption spectroscopy. The resulting system brings a new platform for electrochemical devices by using the synergistic action of the electrocatalytic activity of GNPs and MWNTs. The resulting biosensor displays an excellent electrocatalytic activity and rapid response for hydrogen peroxide. The linear range for the determination of H2O2 was from 5.0×10?7 to 2.0×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelis–Menten constant KMapp value of 0.19 mM.  相似文献   

11.
Summary: In this report an ultrathin Au nanoparticle (AuNP) film composed of photosensitive diazoresin (DR) and mercaptophenol (MP) capped AuNPs (MP‐AuNPs) was fabricated by self‐assembly (SA). The DR/MP‐AuNP film was then patterned through a photomask by selective exposure to UV light and instantly developed in sodium dodecyl sulfate (SDS) aqueous solution. After sintering at 550 °C to remove the organic components, the DR/MP‐AuNPs formed AuNPs. Taking advantage of the catalytic susceptibility of AuNPs toward electroless deposition of Cu, a Cu film micropattern with fine resolution (ca. 2–3 μm) and considerable thickness (ca. 130 nm) was prepared.

SEM image of the micropatterned Cu film on a silicon substrate; scale bar: 10 μm.  相似文献   


12.
We present the synthesis and the electrochemical characterization of polymeric electron transport materials, synthesized by polycondensation of substituted triazines and α,ω‐dihaloalkanes. They can be reversibly reduced with the least negative potential at −0.39 V, which is below the reduction potential of oxygen. In addition, the formation of polyelectrolyte multilayers is possible by the electrostatic self‐assembly method. This multilayer formation takes place in a very defined way up to thirty double layers.

An example of one of the polymeric triazine electron transport materials synthesized and a schematic diagram of a self‐assembled multilayer film.  相似文献   


13.
A simple method is proposed for the electrodeposition of multilayers using a modified closed flow injection system. The apparatus incorporates flowing streams of electrolyte through a closed atmosphere flow cell for deposition of multilayers. Computer and software control is used to alternate the flow of electrolyte and control the alternating current or potential of the electrochemical cell. Electrodeposition of metallic multilayers of nickel/iron, iron/copper, cobalt/copper, and nickel/copper were used to test the instrument design. X‐ray diffraction was used to verify the composition and orientation of the films and scanning electron microscopy was used to examine the morphology of the deposited films. Advantages are discussed for using this type of instrumental setup for multilayer fabrication.  相似文献   

14.
《Electroanalysis》2006,18(24):2451-2457
This paper describes a layer‐by‐layer (LBL) self‐assembly process of chitosan (CTS) and gold nanoparticles (Au) on the pretreated negatively charged glassy carbon (GC) electrode to fabricate electrochemistry immunosensor with a nontoxic biomimetic interface, which provided an environment similar to a native system and allowed more freedom in orientation for immobilization of carcinoembryonic antibody (anti‐CEA) to monitor carcinoembryonic antigen (CEA). UV‐vis spectroscope, atomic force microscopy (AFM), and cyclic voltammetric (CV) measurements were used to follow the multilayer film formation. The performance of the biominetic interface and factors influencing the assay system were investigated in detail. The differential pulse voltammetry (DPV) current response is used for the CEA concentration assay. The dynamic range was from 0.50 to 80.00 ng mL?1 with a detection limit of 0.27 ng mL?1 at 3σ. In addition, the experiment results indicate that immobilization described in this proposed method exhibits a good sensitivity, selectivity, and stability.  相似文献   

15.
16.
17.
18.
Gold nanoparticles (AuNP) with carboxyl groups on their surface were used in combination with PAH for the layer‐by‐layer coating of CaCO3 microparticles, followed by the dissolution of the CaCO3 core. SEM, TEM, and confocal microscopy are used to characterize the hybrid nanoparticles/polyelectrolyte capsules. As the AuNP have carboxyl groups on their surface, their charge density is pH dependent; therefore, the capsules exhibit a pH‐dependent swelling and can be deconstructed both at low and high pH. By covalent cross‐linking of the carboxyl groups of the AuNP and the amino groups of the PAH, it is possible to suppress the pH‐responsive behavior. AuNP are used as activation centers using IR light and this ability is used to release encapsulated material from the nanoparticles/polyelectrolyte capsules as well as for the enhancement of detection and imaging of such capsules by Raman microspectrosopy.

  相似文献   


19.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.

A TEM image of the cross section of a (PGA/PEI‐DNA nanoparticle)20 multilayer.  相似文献   


20.
Polyelectrolyte block copolymer micelles assembled thin film is switched in response to local photocatalytic reactions on titanium dioxide, resulting in a layer of variable height, stiffness in response to visible light irradiation. Preosteoblasts migrate toward stiffer side of the substrates.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号