首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

2.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Regioregular poly(3‐hexyl thiophene) (rr‐P3HT)‐based star polymers were synthesized by a crosslinking reaction of the linear rr‐P3HT macroinitiator and ethylene glycol dimethacrylate (EGDMA) crosslinker through Ru‐based atom transfer radical polymerization (ATRP), where the rr‐P3HT macroinitiator was prepared by Grignard metathesis method (GRIM) followed by end functionalization of the ATRP initiator with chlorophenylacetate (CPA) to the rr‐P3HT. Relatively high molecular weight of the star polymers were obtained (Mp = 8,988,000 g/mol), which consisted of large numbers of the rr‐P3HT arm chains radiating from the EGDMA‐based microgel core. The yield of the star polymers were strongly affected by the added amount of the EGDMA crosslinker. The crystalline structure of the rr‐P3HT by intermolecular π‐π stacking interaction gradually decreased as the star polymer formed, which was confirmed by differential scanning calorimeter (DSC), atomic force microscopy (AFM), and electro‐optical analyses. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The vitamin B8‐based macroinitiator with six 2‐bromoisobutyric initiating sites was prepared for the first time by the transesterification reaction of meso‐inositol with 2‐bromoisobutyryl bromide. A series of six‐armed (co)polymers, containing hydrophilic poly(di(ethylene glycol) methyl ether methacrylate) and amphiphilic poly(di(ethylene glycol) methyl ether methacrylate)‐block‐poly(methyl methacrylate) as the arms and meso‐inositol as the core, were obtained by low ppm atom transfer radical polymerization (ATRP) methods, utilizing 30 ppm of catalyst complex. Under Fe0‐mediated supplemental activators and reducing agents ATRP, Cu0‐mediated supplemental activators and reducing agents ATRP, Ag0‐mediated activators regenerated by electron transfer ATRP, and simplified electrochemically mediated ATRP conditions, polymerization proceeded on to high conversion while maintaining low dispersity (?  = 1.05–1.16) giving well‐defined six‐armed star (co)polymers. 1H NMR spectral results confirm the formation of new star‐shaped block (co)polymers. The absence of intermolecular coupling reactions during synthesis was confirmed by gel permeation chromatography analyses of the side chains of received star (co)polymers. These vitamin B8‐based star (co)polymers may find biomedical applications as thermo‐sensitive drug delivery systems, biosensors, and tissue engineering solutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

6.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

7.
Well‐defined star polymers were synthesized with a combination of the core‐first method and atom transfer radical polymerization. The control of the architecture of the macroinitiator based on β‐cyclodextrin bearing functional bromide groups was determined by 13C NMR, fast atom bombardment mass spectrometry, and elemental analysis. In a second step, the polymerization of the tert‐butyl acrylate monomer was optimized to avoid a star–star coupling reaction and allowed the synthesis of a well‐defined organosoluble polymer star. The determination of the macromolecular dimensions of these new star polymers by size exclusion chromatography/light scattering was in agreement with the structure of armed star polymers in a large range of predicted molecular weights. This article describes a new approach to polyelectrolyte star polymers by postmodification of poly(tert‐butyl acrylate) by acrylic arm hydrolysis in a water‐soluble system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5186–5194, 2005  相似文献   

8.
Diblock star polymers were synthesized via atom transfer radical polymerization from a palladium porphyrin macroinitiator. The arms of the star polymers had an amphiphilic design, with the central Pd-porphyrin surrounded by a relatively hydrophobic block of poly(butyl acrylate) and terminated by a hydrophilic block of poly(oligoethyleneglycol monomethylether monomethacrylate). The size of both the interior and exterior blocks of the polymer arms were tuned over a wide range of molecular weights with the exterior block used to solubilize the stars in polar media. The star polymers showed enhanced reactivity in the oxidation of 2-furaldehyde relative to a small molecule porphyrin, suggesting that the polymer backbone aids with catalytic turnover. Oxygen diffusion studies indicate that the polymer backbone shields the porphyrin excited state from oxygen quenching. Shielding is independent of molecular weight and polymer composition, but it is not pronounced enough to retard the rate of singlet oxygen generation under preparative photooxidation conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4939–4951, 2006  相似文献   

9.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

10.
Various star‐shaped poly(phenoxy propylene sulfide)s (PPSs) bearing curable end groups were synthesized by the functionalization of the propagating ends of star‐shaped poly(PPS) with various electrophilies. The functionalization with chloromethyl styrene proceeded quantitatively, and afforded polymers with Mn almost agreed with theoretical value and narrow Mw/Mn. The photocuring conditions were optimized, and the addition of 10 wt % of poly(ethylene glycol) diacrylate was effective to attain sufficient crosslinking. The photocuring reaction of the end‐functionalized poly(PPS) films cast on silicon wafers was conducted by UV irradiation. The cured poly (PPS)s became insoluble in THF, supporting the sufficient crosslinking. Developing of a cured polymer yielded a negative photoresist pattern. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
We describe here the first example of the synthesis of 4‐arm star poly(acrylic acid) for use as a water‐soluble drag reducing agent, by applying Cu(0)‐mediated polymerization technique. High molecular weight 4‐arm star poly(tert‐butyl acrylate) (Mn = 3.0–9.0 × 105 g mol?1) was first synthesized using 4,4′‐oxybis(3,3‐bis(2‐bromopropionate)butane as an initiator and a simple Cu(0)/TREN catalyst system. Then, 4‐arm star poly(tert‐butyl acrylate) were subjected to hydrolysis using trifluoroacetic acid resulting in water‐soluble 4‐arm star poly(acrylic acid). Drag reduction test rig analysis showed 4‐arm star poly(acrylic acid) to be effective as a drag reducing agent with drag reduction of 24.3%. Moreover, 4‐arm star poly(acrylic acid) exhibited superior mechanical stability when compared with a linear poly(acrylic acid) and commercially available drag reducing polymers; Praestol and poly(ethylene oxide). The linear poly(acrylic acid), Praestol, and poly(ethylene oxide) all showed a large decrease in drag reduction of 8–12% when cycled 30 times through the drag reduction test rig while, in contrast, 4‐arm star poly(acrylic acid) demonstrated much higher mechanical stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 335–344  相似文献   

12.
Star oligo/poly(2,2‐dimethyltrimethylene carbonate)s containing cholic acid moieties were synthesized through the ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) initiated by cholic acid with hydroxyl groups. Through the control of the feed ratio of the initiator cholic acid to the monomer DTC, a series of star oligomers/polymers with different molecular weights were obtained. The star oligomers/polymers were characterized with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, combined size exclusion chromatography/multi‐angle laser light scattering analysis, wide‐angle X‐ray scattering, polarizing light microscopy, and differential scanning calorimetry. Compared with linear poly(2,2‐dimethyltrimethylene carbonate), these star oligo/poly(2,2‐dimethyltrimethylene carbonate)s had much faster hydrolytic degradation rates. With one of the star oligomers/polymers, a microsphere drug‐delivery system of a submicrometer size was fabricated with a very convenient ultrasonic dispersion method that did not involve toxic organic solvents. The in vitro drug release was studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6688‐6696, 2006  相似文献   

13.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

14.
Core‐cleavable star polymers were synthesized by the coupling of living anionic poly(alkyl methacrylate) arms with either dicumyl alcohol dimethacrylate (DCDMA) or 2,5‐dimethyl‐2,5‐hexanediol dimethacrylate (DHDMA). This synthetic methodology led to the formation of star polymers that exhibited high molecular weights and relatively narrow molecular weight distributions. The labile tertiary alkyl esters in the DCDMA and DHDMA star polymer cores were readily hydrolyzed under acidic conditions. High‐molecular‐weight star polymer cleavage led to well‐defined arm polymers with lower molecular weights. Hydrolysis was confirmed via 1H NMR spectroscopy and gel permeation chromatography. Thermogravimetric analysis (TGA) of the star polymers demonstrated that the DCDMA and DHDMA star polymer cores also thermally degraded in the absence of acid catalysts at 185 and 220 °C, respectively, and the core‐cleavage temperatures were independent of the arm polymer composition. The difference in the core‐degradation temperatures was attributed to the increased reactivity of the DCDMA‐derived cores. TGA/mass spectrometry detected the evolution of the diene byproduct of the core degradation and confirmed the proposed degradation mechanism. The DCDMA monomer exhibited a higher degradation rate than DHDMA under identical reaction conditions because of the additional resonance stabilization of the liberated byproduct, which made it a more responsive cleavable coupling monomer than DHDMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3083–3093, 2003  相似文献   

15.
Star polymers with end‐functionalized arm chains (surface‐functionalized star polymers) were synthesized by the in situ linking reaction between ethylene glycol dimethacrylate (linking agent) and an α‐end‐functionalized linear living poly(methyl methacrylate) in RuCl2(PPh3)3‐catalyzed living radical polymerization; the terminal on the surface functionalities included amides, alcohols, amines, and esters. The star polymers were obtained in high yields (75–90%) with initiating systems consisting of a functionalized 2‐chloro‐2‐phenylacetate or ‐acetamide [F? C(O)CHPhCl; F = nPrNH? , HOCH2CH2O? , Me2NCH2CH2O? , or EtO? ; initiator] and n‐Bu3N (additive). The yield was lower with a functionalized 2‐bromoisobutyrate [Me2NCH2CH2OC(O)CMe2Br] initiator or with Al(Oi‐Pr)3 as an additive. Multi‐angle laser light scattering analysis showed that the star polymers had arm numbers of 10–100, radii of gyration of 6–23 nm, and weight‐average molecular weights of 1.3 × 105 to 3.0 × 106, which could be controlled by the molar ratio of the linking agent to the linear living polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1972–1982, 2002  相似文献   

16.
Thermoregulated phase‐transfer catalysis for the transfer hydrogenation of 2‐octanone in 2‐propanol/H2O biphasic media was achieved with ruthenium‐bearing microgel‐core star polymers with amphiphilic, thermosensitive poly(ethylene glycol) (PEG) arms [Ru(II)‐PEG star], which were directly prepared by the ruthenium‐catalyzed living radical polymerization in conjunction with a phosphine ligand‐carrying styrene derivative. The star polymers were first placed in the aqueous (lower) layer at room temperature and immediately moved into the organic (upper) layer at 100 °C, and once again, moved down to the aqueous layer (lower) upon cooling the solution to room temperature. The Ru(II)‐PEG star catalyst was clearly superior to the original Ru(II) catalyst and related non‐microgel catalysts [Ru(II)‐PEG block] in terms of activity and recovery/recycle, due to the unique designer structure of the microgel‐core star polymers. Other substrates (less hydrophobic alkyl ketones and aromatic ketone) were also efficiently hydrogenated into the corresponding sec‐alcohols with the star catalyst in aqueous media. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 373–379, 2010  相似文献   

17.
Diels–Alder click reaction was successfully applied for the preparation of 3‐arm star polymers (A3) using furan protected maleimide end‐functionalized polymers and trianthracene functional linking agent (2) at reflux temperature of toluene for 48 h. Well‐defined furan protected maleimide end‐functionalized polymers, poly (ethylene glycol), poly(methyl methacrylate), and poly(tert‐butyl acrylate) were obtained by esterification or atom transfer radical polymerization. Obtained star polymers were characterized via NMR and GPC (refractive index and triple detector detection). Splitting of GPC traces of the resulting polymer mixture notably displayed that Diels–Alder click reaction was a versatile and a reliable route for the preparation of A3 star polymer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 302–313, 2008  相似文献   

18.
A variety of well‐defined tetra‐armed star‐shaped poly(N‐substituted p‐benzamide)s, including block poly(p‐benzamide)s with different N‐substituents, and poly(N‐substituted m‐benzamide)s, were synthesized by using porphyrin‐cored tetra‐functional initiator 2 under optimized polymerization conditions. The initiator 2 allowed discrimination of the target star polymer from concomitantly formed linear polymer by‐products by means of GPC with UV detection, and the polymerization conditions were easily optimized for selective synthesis of the star polybenzamides. Star‐shaped poly(p‐benzamide) with tri(ethylene glycol) monomethyl ether (TEG) side chain was selectively obtained by polymerization of phenyl 4‐{2‐[2‐(2‐methoxyethoxy)ethoxy]ethylamino}benzoate ( 1b ′) with 2 at ?10 °C in the case of [ 1b ′]0/[ 2 ]0 = 40 and at 0 °C in the case of [ 1b ′]0/[ 2 ]0 = 80. Star‐shaped poly(p‐benzamide) with 4‐(octyloxy)benzyl (OOB) substituent was obtained only when methyl 4‐[4‐(octyloxy)benzylamino]benzoate ( 1c ) was polymerized at 25 °C at [ 1c ]0/[ 2 ]0 = 20. On the other hand, star‐shaped poly(m‐benzamide)s with N‐butyl, N‐octyl, and N‐TEG side chains were able to be synthesized by polymerization of the corresponding meta‐substituted aminobenzoic acid alkyl ester monomers 3 at 0 °C until the ratio of [ 3 ]0/[ 2 ]0 reached 80. However, star‐shaped poly(m‐benzamide)s with the OOB group were contaminated with linear polymer even when the feed ratio of the monomer 3d to 2 was 20. The UV–visible spectrum of an aqueous solution of star‐shaped poly(p‐benzamide) with TEG side chain indicated that the hydrophobic porphyrin core was aggregated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
We report the synthesis and thermosensitive properties of well‐defined water‐soluble polyacrylates and polystyrenics with short pendant oligo(ethylene glycol) groups. Four monomers, methoxydi(ethylene glycol) acrylate (DEGMA), methoxytri(ethylene glycol) acrylate (TEGMA), α‐hydro‐ω‐(4‐vinylbenzyl)tris(oxyethylene) (HTEGSt), and α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene) (HTrEGSt), were prepared and polymerized by nitroxide‐mediated radical polymerization with 2,2,5‐trimethyl‐3‐(1‐phenylethoxy)‐4‐phenyl‐3‐azahexane as an initiator. Kinetics and gel permeation chromatography analysis showed that the polymerizations were controlled processes yielding polymers with controlled molecular weights and narrow polydispersities. All polymers could be dissolved in water, forming transparent solutions, and undergo phase transitions when the temperature was above a critical point. The thermosensitive properties were studied by turbidimetry and variable‐temperature 1H NMR spectroscopy. The cloud points of the polymers of DEGMA, TEGMA, HTEGSt, and HTrEGSt were around 38, 58, 13, and 64 °C, respectively. For all four polymers, the cloud point increased with decreasing concentration and increasing molecular weight in the studied molecular weight range of 5000–30,000 g/mol. The removal of the nitroxide group from the polymer chain end resulted in a higher cloud point. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2454–2467, 2006  相似文献   

20.
We report a simple preparation of three‐armed (A3‐type) star polymers based on the arm‐first technique, using a click‐reaction strategy between a well‐defined azide‐end‐functionalized polystyrene, poly(tert‐butyl acrylate), or poly(ethylene glycol) precursor and a trisalkyne‐functional initiator, 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]ethane. The click‐reaction efficiency for A3‐type star formation has been investigated with gel permeation chromatography measurements (refractive‐index detector). The gel permeation chromatography curves have been split with the deconvolution method (Gaussian area), and the efficiency of A3‐type star formation has been found to be 87%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6458–6465, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号