首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dinuclear [NbCln(OR)(5‐n)]2 (n = 4, R = Et, 1 ; n = 4, R = CH2Ph, 2 ; n = 3, R = Et, 3 ; n = 2, R = Et, 4 ; n = 2, R = , 5 ), and [Nb(OEt)5]2, 6 , and the mononuclear niobium compounds NbCl42? OCH2CH(R′)OR] (R = Me, R′ = H, 7 ; R = Et, R′ = H, 8 ; R = CH2Cl, R′ = H, 9 ; R = CH2CH2OMe, R′ = H, 10 ; R = R′ = Me, 11 ), NbBr42? OCH2CH2OMe], 12 , and NbCl32? OCH2CH2OMe)(κ1? OCH2CH2OMe), 13 , were tested in ethylene polymerization. Optimized reaction conditions included the use of D‐MAO as co‐catalyst and chlorobenzene as solvent at 50 °C. Complex 7 , whose X‐Ray structure is described here for the first time, exhibited the highest activity ever reported for a niobium catalyst in alkene polymerization [151 kgpolymer × molNb?1 × h?1 × bar?1]. Compounds 1 , 3‐5 , 8 , 13 showed activities similar to that of 7 . Linear polyethylenes (characterized by FT‐IR, NMR, GPC, and DSC analyses) with a broad polydispersivity were obtained. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The hydropyrimidine salan (salan=N,N′‐dimethyl‐N,N′‐bis[(2‐hydroxyphenyl)methylene]‐1,2‐diaminoethane) proteo‐ligands with a rigid backbone {ON^(CH2)^NO}H2 react with M(CH2SiMe3)3 (M=Ga, In) to yield the zwitterions {ON^(CH+)^NO}M?(CH2SiMe3)2 (M=Ga, 2 ; In, 3 ) by abstraction of a hydride from the ligand backbone followed by elimination of dihydrogen. By contrast, with Al2Me6, the neutral‐at‐metal bimetallic complex [{ON^(CH2)^NO}AlMe]2 ( [1]2 ) is obtained quantitatively. The formation of indium zwitterions is also observed with sterically more encumbered ligands containing o‐Me substituents on the phenolic rings, or an N (CHPh) N moiety in the heterocyclic core. Overall, the ease of C?H bond activation follows the order Al?Ga<In. Experimental data based on model complexes, XRD studies, and 2H NMR spectroscopy show that the formation of the Ga/In zwitterion involves rapid release of SiMe4 followed by evolution of H2, and suggest the formation of a transient metal‐hydride species. DFT calculations indicate that the systems {ON^(CH2)^NO}H2+M(CH2SiMe3)3 (M=Al, Ga, In) all initially lead to the formation of the neutral monophenolate dihydrocarbyl species through a single protonolysis. From here, the thermodynamic product, the model neutral‐at‐metal complex 1 , is formed in the case of aluminum after a second protonolysis. On the other hand, lower activation energy pathways lead to the generation of zwitterionic complexes 2 and 3 in the cases of gallium and indium, and the formation of these zwitterions obeys a strict kinetic control; the computations suggest that, as inferred from the experimental data, the reaction proceeds through an instable metal‐hydride species, which could not be isolated synthetically.  相似文献   

3.
The complexes [TiCl2{(R,R)‐TADDOLato}(DME)]⋅MeCN ( 3 ), and [TiCl2{(R,R)‐1‐Nph‐TADDOLato}(MeCN)2]⋅CH2Cl2 ( 4b ) (DME=1,2‐dimethoxyethane; (R,R)‐TADDOLato=(4R,5R)‐2,2‐dimethyl‐α,α,α′,α′‐tetraphenyl‐1,3‐dioxolane‐4,5‐dimethanolato(2−)‐κO,κO′; (R,R)‐1‐Nph‐TADDOLato=(4R,5R)‐2,2‐dimethyl‐α,α,α′,α′‐tetra(naphthalen‐1‐yl)‐1,3‐dioxolane‐4,5‐dimethanolato(2−)‐κO,κO′) were prepared and isolated in high yield as stable crystalline materials (Scheme 1). They constitute ideally suited and easy‐to‐handle catalyst precursors for a large number of Ti‐catalyzed asymmetric reactions, for which they have been previously generated in situ. The X‐ray crystal structures of 3 and 4b show a distorted octahedral geometry around Ti with the chloro ligands in mutual trans positions (Figs. 5 and 6). The new chiral diols α‐(1S,3R)‐3‐hydroxy‐2,2,3‐trimethylcyclopentyl]‐α‐phenylbenzenemethanol ( 13a ), derived from camphoric acid ( 5 ), and (M)‐6,6′‐dimethyl‐α,α,α′,α′‐tetraphenyl[1,1′‐biphenyl]‐2,2′‐dimethanol ( 15 ) were prepared (Schemes 3 and 4). These new ligands are able to form mononuclear complexes with the TiIVCl2 fragment. The corresponding complex 14 derived from 13a was characterized by X‐ray as a mixed THF/MeCN adduct.  相似文献   

4.
A new family of nickel(II) complexes of the type [Ni(L)(CH3CN)](BPh4)2, where L=N‐methyl‐N,N′,N′‐tris(pyrid‐2‐ylmethyl)‐ethylenediamine (L1, 1 ), N‐benzyl‐N,N′,N′‐tris(pyrid‐2‐yl‐methyl)‐ethylenediamine (L2, 2 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(6‐methyl‐pyrid‐2‐yl‐methyl)‐ethylenediamine (L3, 3 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(quinolin‐2‐ylmethyl)‐ethylenediamine (L4, 4 ), and N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐imidazole‐2‐ylmethyl)‐ethylenediamine (L5, 5 ), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single‐crystal X‐ray structure of [Ni(L3)(CH3CN)](BPh4)2 reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one‐electron oxidation corresponding to the NiII/NiIII redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m‐CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1–10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH3CN)](BPh4)2 by the strongly σ‐bonding but weakly π‐bonding imidazolylmethyl arm as in [Ni(L5)(CH3CN)](BPh4)2 or the sterically demanding 6‐methylpyridylmethyl ([Ni(L3)(CH3CN)](BPh4)2 and the quinolylmethyl arms ([Ni(L4)(CH3CN)](BPh4)2, both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin‐state reactivity for the high‐spin [(N5)NiII?O.] intermediate (ts1hs, ts2doublet), which has a low‐spin state located closely in energy to the high‐spin state. The lower catalytic activity of complex 5 is mainly due to the formation of thermodynamically less accessible m‐CPBA‐coordinated precursor of [NiII(L5)(OOCOC6H4Cl)]+ ( 5 a ). Adamantane is oxidized to 1‐adamantanol, 2‐adamantanol, and 2‐adamantanone (3°/2°, 10.6–11.5), and cumene is selectively oxidized to 2‐phenyl‐2‐propanol. The incorporation of sterically hindering pyridylmethyl and quinolylmethyl donor ligands around the NiII leads to a high 3°/2° bond selectivity for adamantane oxidation, which is in contrast to the lower cyclohexane oxidation activities of the complexes.  相似文献   

5.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

6.
A potentially pentadentate hydrazone ligand, N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazide‐κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato‐κ2O,O′){μ3N′‐[1‐(pyrazin‐2‐yl‐κ2N1:N4)ethylidene]nicotinohydrazidato‐κ3N′,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square‐pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three‐dimensional network with rectangular channels, and the L ligand also serves as a counter‐anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono‐anionic ligand, is useful in the construction of interesting metal–organic compounds.  相似文献   

7.
Two CrIII‐MnIII heterobimetallic compounds, [Mn((R,R)‐5‐MeOSalcy)Cr(Tp)(CN)3 · 2CH3CN]n ( 1‐RR ) and [Mn((S,S)‐5‐MeOSalcy)Cr(Tp)(CN)3·2CH3CN]n ( 1‐SS ) [Salcy = N,N′‐(1,2‐cyclohexanediylethylene)bis(salicylideneiminato) dianion], were synthesized by using the tricyanometalate building block, [(Tp)Cr(CN)3] [Tp = tris(pyrazolyl) hydroborate] and chiral MnIII Schiff base precursors. Structural analyses and circular dichroism (CD) spectra revealed that 1‐RR and 1‐SS are a pair of enantiomers containing a neutral cyano‐bridged zigzag chain with (–Cr–C≡N–Mn–N≡C–)n as the repeating unit. Magnetic studies show that antiferromagnetic couplings between CrIII and MnIII ions occur by cyanide bridges. 1‐RR and 1‐SS present metamagnetic, spin‐canting, and antiferromagnetic order behaviors at low temperatures.  相似文献   

8.
采用稀释法与胺5倍过量合成了一种新型的含吡啶环的开链二胺1a(N,N′-双(2-氨基乙基)-2,6-吡啶二甲酰胺)。此外,合成了六个新型多齿希夫碱配体N,N′-双(β-R-苯甲醛亚胺基乙基)-2,6-吡啶二甲酰胺[其中,R=H (2a),o-OH (2b),p-OH (2c),m-NO2 (2d),p- N(CH3)2 (2e)]及N,N′-双[γ-水杨醛亚胺基正丙基]-2,6-吡啶二甲酰胺2f。通过元素分析,紫外-可见光谱,红外光谱,氢核磁共振谱及质谱对化合物进行了表征。通过化合物2e的单晶结构X-射线单晶衍射分析表明该晶体属于立方晶系P-1空间群,其晶胞参数为:a=11.010(2) nm,b=13.865(3) nm,c=9.6537(19) nm,α=102.77(2)º,β=92.07(3)º,γ=87.98(3)º,V=1435.7(5) nm3,Z=2,Dc=1.230 mg•cm-3,Mr=531.66。微量热法检测了化合物对大肠杆菌的抑制作用,并初步分析了化合物结构与抗菌活性之间的关系。实验结果表明,所有化合物都对大肠杆菌有抑制作用,其中水杨醛希夫碱的抑菌活性最好。  相似文献   

9.
In the hydrated adduct N,N′‐di­methyl­piperazine‐1,4‐diium bis(3‐carboxy‐2,3‐di­hydroxy­propanoate) dihydrate, [MeNH(CH2CH2)2NHMe]2+·2(C4H5O6)?·2H2O or C6H16N22+·2C4H5O6?·2H2O, formed between racemic tartaric acid and N,N′‐di­methyl­piperazine (triclinic P, Z′ = 0.5), the cations lie across centres of inversion. The anions alone form chains, and anions and water mol­ecules together form sheets; the sheets are linked by the cations to form a pillared‐layer framework. The supramolecular architecture thus takes the form of a family of N‐dimensional N‐component structures having N = 1, 2 or 3.  相似文献   

10.
Reported here are the single‐crystal X‐ray structure analyses of bis‐μ‐methanol‐κ4O:O‐bis{[hydrotris(3‐phenyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato‐κ3H,S,S′](methanol‐κO)sodium(I)}, [Na2(C27H22BN6S3)2(CH4O)4] (NaTmPh), bis‐μ‐methanol‐κ4O:O‐bis{[hydrotris(3‐isopropyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato‐κ3H,S,S′](methanol‐κO)sodium(I)}–diethyl ether–methanol (1/0.3333/0.0833), [Na2(C18H28BN6S3)2(CH4O)4]·0.3333C4H10O·0.0833CH3OH (NaTmiPr), and a novel anhydrous form of sodium hydrotris(methylthioimidazolyl)borate, poly[[μ‐hydrotris(3‐methyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato]sodium(I)], [Na(C12H16BN6S3)] ([NaTmMe]n). NaTmiPr and NaTmPh have similar dimeric molecular structures with κ3H,S,S′‐bonding, but they differ in that NaTmPh is crystallographically centrosymmetric (Z′ = 0.5) while NaTmiPr contains one crystallographically centrosymmetric dimer and one dimer positioned on a general position (Z′ = 1.5). [NaTmMe]n is a one‐dimensional coordination polymer that extends along the a direction and which contains a hitherto unseen side‐on η2‐C=S‐to‐Na bond type. An overview of the structural preferences of alkali metal soft scorpionate complexes is presented. This analysis suggests that these thione‐based ligands will continue to be a rich source of interesting alkali metal motifs worthy of isolation and characterization.  相似文献   

11.
A 1D double‐zigzag framework, {[Zn(paps)2(H2O)2](ClO4)2}n ( 1 ; paps=N,N′‐bis(pyridylcarbonyl)‐4,4′‐diaminodiphenyl thioether), was synthesized by the reaction of Zn(ClO4)2 with paps. However, a similar reaction, except that dry solvents were used, led to the formation of a novel 2D polyrotaxane framework, [Zn(paps)2(ClO4)2]n ( 2 ). This difference relies on the fact that water coordinates to the ZnII ion in 1 , but ClO4? ion coordination is found in 2 . Notably, the structures can be interconverted by heating and grinding in the presence of moisture, and such a structural transformation can also be proven experimentally by powder and single‐crystal X‐ray diffraction studies. The related N,N′‐bis‐ (pyridylcarbonyl)‐4,4′‐diaminodiphenyl ether (papo) and N,N′‐(methylenedi‐para‐phenylene)bispyridine‐4‐carboxamide (papc) ligands were reacted with ZnII ions as well. When a similar reaction was performed with dry solvents, except that papo was used instead of paps, the product mixture contained mononuclear [Zn(papo)(CH3OH)4](ClO4)2 ( 5 ) and the polyrotaxane [Zn(papo)2(ClO4)2]n ( 4 ). From the powder XRD data, grinding this mixture in the presence of moisture resulted in total conversion to the pure double‐zigzag {[Zn(papo)2(H2O)2](ClO4)2}n ( 3 ) immediately. Upon heating 3 , the polyrotaxane framework of 4 was recovered. The double‐zigzag {[Zn(papc)2(H2O)2](ClO4)2}n ( 6 ) and polyrotaxane [Zn(papc)2(ClO4)2]n ( 7 ) were synthesized in a similar reaction. Although upon heating the double‐zigzag 6 undergoes structural transformation to give the polyrotaxane 7 , grinding solid 7 in the presence of moisture does not lead to the formation of 6 . Significantly, the bright emissions for double‐zigzag frameworks of 1 and 3 and weak ones for polyrotaxane frameworks of 2 and 4 also show interesting mechanochromic luminescence.  相似文献   

12.
The compounds 5,6‐dihydro‐4H‐imidazo[4,5‐c][1,2,5]oxadiazole ( 3a , R?H), 4,6,10,12‐tetramethyl‐5,6,11,12‐tetrahydro‐4H,10H‐bis(1,2,5)oxadiazolo[3,4‐d:3′,4′‐I][1,3,6,8]tetraazecine ( 4b , R?CH3), N3,N3′‐methylenebis‐3,4‐diamino‐1,2,5‐oxadiazole ( 5a , R?H) and N3,N3′‐methylenebis(N,N′‐dimethyl‐3,4‐diamino‐1,2,5‐oxadiazolee) ( 5b , R?CH3) were synthesized from the reaction of formaldehyde with 3,4‐diamino‐1,2,5‐oxadiazole and N,N′‐3,4‐dimethylamino‐1,2,5‐oxadiazole in an acetonitrile.  相似文献   

13.
Reaction of 7‐{(N‐2,6‐R)iminomethyl)}indole ( HL1 , R = dimethylphenyl; HL2 , R = diisopropylphenyl) and rare‐earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, generated new rare‐earth metal bis(alkyl) complexes LLn(CH2SiMe3)2(THF) [L = L1: Ln = Lu ( 1a ), Sc ( 1b ); L = L2: Ln = Lu ( 3a ), Sc ( 3b )] and mono(alkyl) complexes L22Lu(CH2SiMe3) ( 4a ). Treatment of alkyl complexes 1a and 4a with N,N′‐diisopropylcarbodiimide afforded the corresponding amidinates L1Lu{iPr2NC(CH2SiMe3)NiPr2}2 ( 2a ) and L22Lu{iPr2NC(CH2SiMe3)NiPr2} ( 5a ), respectively. These new rare‐earth metal alkyls and amidinates except 4a in combination with aluminum alkyls and borate generated efficient homogeneous catalysts for the polymerization of isoprene, providing high cis‐1,4 selectivity and high molar mass polyisoprene with narrow molar mass distribution (Mn = 2.65 × 105, Mw/Mn = 1.07, cis‐1,4 98.2%, −60 °C). The environmental hindrance around central metals arising from the bulkiness of the ligands, the Lewis‐acidity of rare‐earth metal ions, the types of aluminum tris(alkyl)s and borate, and polymerization temperature influenced significantly on both the catalytic activity and the regioselectivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5251–5262, 2008  相似文献   

14.
Supramolecular isomerism for coordination networks refers to the existence of different architectures having the same building blocks and identical stoichiometries. For a given building block, different arrangements can lead to the formation of a series of supramolecular isomers. Two one‐dimensional CoII coordination polymers based on N,N′‐bis(pyridin‐3‐yl)oxalamide (BPO), both catena‐poly[[[dichloridocobalt(II)]‐bis[μ‐N,N′‐bis(pyridin‐3‐yl)oxalamide‐κ2N:N′]] dimethylformamide disolvate], {[CoCl2(C12H10N4O2)2]·2C3H7NO}n, have been assembled by the solvothermal method. Single‐crystal X‐ray diffraction analyses reveal that the two compounds are supramolecular isomers, the isomerism being induced by the orientation of the dimethylformamide (DMF) molecules in the crystal lattice.  相似文献   

15.
Polypropylene film was biaxially stretched in one step in air at 140°C or 152°C, and the deformation was studied optically. A linear relation held between Δnss and vA for vA > 10, at both temperatures, where Δnss is the birefringence with respect to the normal to the film and vA is the degree of stretching expressed as the factor by which the area of the film is increased. Extrapolation of data in this linear region yielded a value of 20 × 10?3 for ?Δnss at infinite vA. Since it is presumed that the polypropylene molecules lie completely parallel to the film surface when the film is stretched infinitely, ?Δnss at vA = 0 must be just half Δn°, the intrinsic birefringence in the case of completely parallel orientation. Thus, Δn° must be 40 × 10?3. This value was obtained experimentally in uniaxial stretching when the birefringence with respect to the direction of drawing was extrapolated to infinite extension. Similar relations held between np, the average of the refractive indices in the two stretching directions, and vA, and between nss, the index normal to the film, and vA. By similar extrapolations, (1/2)(nγ + nβ) and nβ = n*α′ were estimated, and thence nα′ was obtained. Here, nα and nβ are the refractive indices along the c axis (molecular chain axis) and b axis. All these optical parameters refer to a density of 0.900 g/cm3. Hence by applying a density correction to those values, the principal refractive indices and the intrinsic birefringence of polypropylene crystal were evaluated as follows: nα = 1.5522, nβ = n*α = 1.5106 and Δnc° = 4.16 × 10?3, where n*α is the refractive index prependicular to the b and c axes of the crystal.  相似文献   

16.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

17.
The complexation of rhodium(II) tetraacetate, tetrakistrifluoroaceate and tetrakisoctanoate with a set of diamines (ethane‐1,diamine, propane‐1,3‐diamine and nonane‐1,9‐diamine) and their N,N′‐dimethyl and N,N,N′,N′‐tetramethyl derivatives in chloroform solution has been investigated by 1H and 13C NMR spectroscopy and density functional theory (DFT) modelling. A combination of two bifunctional reagents, diamines and rhodium(II) tetracarboxylates, yielded insoluble coordination polymers as main products of complexation and various adducts in the solution, being in equilibrium with insoluble material. All diamines initially formed the 2 : 1 (blue), (1 : 1)n oligomeric (red) and 1 : 2 (red) axial adducts in solution, depending on the reagents' molar ratio. Adducts of primary and secondary diamines decomposed in the presence of ligand excess, the former via unstable equatorial complexes. The complexation of secondary diamines slowed down the inversion at nitrogen atoms in NH(CH3) functional groups and resulted in the formation of nitrogenous stereogenic centres, detectable by NMR. Axial adducts of tertiary diamines appeared to be relatively stable. The presence of long aliphatic chains in molecules (adducts of nonane‐1,9‐diamines or rhodium(II) tetrakisoctanoate) increased adduct solubility. Hypothetical structures of the equatorial adduct of rhodium(II) tetraacetate with ethane‐1,2‐diamine and their NMR parameters were explored by means of DFT calculations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Addition of one equivalent of LiN(i-Pr)2 or LiN(CH2)5 to carbodiimides, RN=C=NR [R=cyclohexyl (Cy), isopropyl (i-Pr)], generated the corresponding lithium of tetrasubstituted guanidinates {Li[RNC(N R^′2)NR](THF)}2 [R=i-Pr, N R^′2=N(i-Pr)2 (1), N(CH2)5 (2); R=Cy, N R^′2=N(i-Pr)2 (3), N(CH2)5 (4)]. Treatment of ZrCl4 with freshly prepared solutions of their lithium guanidinates provided a series of bis(guanidinate) complexes of Zr with the general formula Zr[RNC(N R^′2)NR]2Cl2 [R=i-Pr, N R^′2=N(i-Pr)2 (5), N(CH2)5 (6); R=Cy, N R^′2=N(i-Pr)2 (7), N(CH2)5 (8)]. Complexes 1, 2, 5-8 were characterized by elemental analysis, IR and ^1H NMR spectra. The molecular structures of complexes 1, 7 and 8 were further determined by X-ray diffraction studies.  相似文献   

19.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

20.
The substitution effect of various functional groups such as –NO2, –CN, –N3, –NF2, and –NH2 on the density of tetrazolium nitrate salts is investigated through multiple linear regression method. The methodology of this work introduces a new model, which related density of tetrazolium nitrate salts to the number of fluorine and nitrogen atoms, the presence of NF2 groups, NO2 groups, as well as CH3 groups in the structural formula. The new reliable correlation shows that the NF2 and NO2 group can cause increasing the density of tetrazolium nitrate salts, especially NO2, whereas the CH3 group can decrease their density. The new proposed relationship has good reliability and predictability, so it can be used to design new rich nitrogen compounds based on tetrazolium nitrate salts as green energetic materials. These results are also tested for N,N′‐azo‐1,2,4‐triazolium nitrate salts, which is caused to derive another correlation. This correlation shows that the presence of NF2 functional groups increases the density of N,N′‐azo‐1,2,4‐triazolium nitrate salts as well as the value of nO/nC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号