首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
For the structural characterization of nanoscale objects, X‐ray diffraction is widely used as a technique complementing local probe analysis methods such as scanning electron microscopy and transmission electron microscopy. Details on strain distributions, chemical composition, or size and shape of nanostructures are addressed. X‐ray diffraction traditionally obtains very good statistically averaged properties over large ensembles—provided this averaging is meaningful for ensembles with sufficiently small dispersion of properties. In many cases, however, it is desirable to combine different analysis techniques on exactly the same nano‐object, for example, to gain a more detailed insight into the interdependence of properties. X‐ray beams focused to diameters in the sub‐micron range, which are available at third‐generation synchrotron sources, allow for such X‐ray diffraction studies of individual nano‐objects.  相似文献   

2.
3.
A new high‐pressure AlPO4 phase obtained at 5 GPa and 1500 °C is characterized by synchrotron powder XRD and MAS NMR spectroscopy.  相似文献   

4.
Reported here is the first crystallographic observation of stereospecific bindings of l ‐ and d ‐lysine (Lys) in achiral MFI zeolites. The MFI structure offers inherent geometric and internal confinement effects for the enantiomeric difference in l ‐ and d ‐Lys adsorption. Notable differences have been observed by circular dichroism (CD) spectroscopy and thermogravimetric analysis (TGA). Distinct l ‐ and d ‐Lys adsorption behaviours on the H‐ZSM‐5 framework have been revealed by the Rietveld refinement of high‐resolution synchrotron X‐ray powder diffraction (SXRD) data and the density‐functional theory (DFT) calculations. Despite demonstrating the approach for l ‐ and d ‐Lys over MFI zeolites at an atomistic resolution, the differential adsorption study sheds light on the rational engineering of molecular interaction(s) with achiral microporous materials for chiral separation purposes.  相似文献   

5.
6.
Perfluoroalkylation of a higher fullerene mixture with CF3I or C2F5I, followed by HPLC separation of CF3 and C2F5 derivatives, resulted in the isolation of several C84(RF)n (n=12, 16) compounds. Single‐crystal X‐ray crystallography with the use of synchrotron radiation allowed structure elucidation of eight C84(RF)n compounds containing six different C84 cages (the number of the C84 isomer is given in parentheses): C84 (23)(C2F5)12 ( I ), C84 (22)(CF3)16 ( II ), C84 (22)(C2F5)12 ( III ), C84 (11)(C2F5)12 ( IV ), C84 (16)(C2F5)12 ( V ), C84 (4)(CF3)12 ( VI with toluene and VII with hexane as solvate molecules), and C84 (18)(C2F5)12 ( VIII ). Whereas some connectivity patterns of C84 isomers (22, 23, 11) had previously been unambiguously confirmed by different methods, derivatives of C84 isomers numbers 4, 16, and 18 have been investigated crystallographically for the first time, thus providing direct proof of the connectivity patterns of rare C84 isomers. General aspects of the addition of RF groups to C84 cages are discussed in terms of the preferred positions in the pentagons under the formation of chains, pairs, and isolated RF groups.  相似文献   

7.
8.
Herein, we introduce an approach for the computational screening of stoichiometric reactions between trimethylaluminum (TMA) and water. The thermodynamic products of these reactions are methylaluminoxanes (MAOs) with different compositions, which have the general formula (AlOMe)n(AlMe3)m, in which n describes the degree of oligomerization and m is the number of associated TMA molecules. These reaction products were thoroughly explored up to n=4, thus demonstrating the thermodynamically preferable association of up to four AlMe3 molecules, that is, TMA molecules in their monomeric form. The relative Lewis acidities of the Al sites in these MAOs were systematically explored and we found that the associated TMA molecules were a key ingredient for co‐catalytic activity in olefin‐polymerization catalysis. This conclusion was supported by computational studies on catalyst activation, which revealed an exergonic insertion of ethene into the metallocene/MAO complex.  相似文献   

9.
The addition of primary amines as solubilizing reagents for phthalocyaninatoiron complexes is shown to afford six‐coordinate bis(amine)phthalocyaninato complexes, i.e., [Fe(amine)2(pc)] 2 (amine = decan‐1‐amine) and 3 (amine = benzylamine), with the two new N‐donors occupying the trans‐axial positions. The new complexes were characterized by extensive NMR measurements in THF solution. For complex 3 with the benzylamine ligand, the solid‐state structure was determined by X‐ray diffraction methods. Complex 2 is sufficiently labile in THF solution to exchange one amine ligand against CO (gas) affording an equilibrium mixture containing [Fe(amine)(CO)(pc)] 4 .  相似文献   

10.
We report a novel Nb(V)−carboxylate cluster obtained from reaction of niobium(V) ethoxide and pivalic (trimethylacetic) acid. Single crystal X-ray diffraction data reveal a structure composed of 16 Nb(V) ions featuring oxo-, ethoxy- and pivalate moieties. The new cluster exhibits the highest nuclearity among structurally characterized niobium carboxylates reported to date.  相似文献   

11.
Molecular movies : Time‐resolved X‐ray scattering provides direct structural information on an electronically excited complex while it is formed in the bimolecular reaction between excited octahydrogen[tetrakis‐μ‐diphosphito‐1κP:2κP′‐diplatinate](4‐) (PtPOP*) and thallium ions. In the exciplex one thallium(I) and two platinum(II) ions are found to be collinear.

  相似文献   


12.
13.
The tetravalent platinum stiboranyl complex [(o‐(Ph2P)C6H4)2(o‐C6Cl4O2)Sb]PtCl2Ph ( 2 ) has been synthesized by reaction of [(o‐(Ph2P)C6H4)2SbClPh]PtCl ( 1 ) with o‐chloranil. In the presence of fluoride anions, the stiboranyl moiety of 2 displays non‐innocent behavior and is readily converted into a fluorostiborane unit. This transformation, which is accompanied by elimination of a chloride ligand from the Pt center, results in the formation of [(o‐(Ph2P)C6H4)2(o‐C6Cl4O2)SbF]PtClPh ( 3 ). Structural, spectroscopic, and computational studies show that the conversion of 2 into 3 is accompanied by a cleavage of the covalent Pt? Sb bond present in 2 and formation of a longer and weaker Pt→Sb interaction in 3 . These results show that this new Pt–Sb platform supports the fluoride‐induced metamorphosis of a stiboranyl X ligand into a stiborane Z ligand.  相似文献   

14.
15.
16.
Open‐framework materials, such as metal–organic frameworks (MOFs) and coordination polymers have been widely investigated for their gas adsorption and separation properties. However, recent studies have demonstrated that their highly crystalline structures can be used to periodically organize guest molecules and non‐structural metal compounds either within their pore voids or by anchoring to their framework architecture. Accordingly, the open framework can act as a matrix for isolating and elucidating the structures of these moieties by X‐ray diffraction. This concept has broad scope for development as an analytical tool where obtaining single crystals of a target molecule presents a significant challenge and it additionally offers potential for obtaining insights into chemically reactive species that can be stabilized within the pore network. However, the technique does have limitations and as yet a general experimental method has not been realized. Herein we focus on recent examples in which framework materials have been utilized as a scaffold for ordering molecules for analysis by diffraction methods and canvass areas for future exploration.  相似文献   

17.
The unprecedented dehydration of a selenenic acid (RCH2SeOH) to a selenoaldehyde (RCH?Se) has been demonstrated. A primary‐alkyl‐substituted selenenic acid was synthesized for the first time by taking advantage of a bulky cavity‐shaped substituent. Upon heating in solution, the selenenic acid underwent thermal dehydration to produce a stable selenoaldehyde, which was isolated as stable crystals and crystallographically characterized. Investigation of the reaction mechanism revealed that this β dehydration reaction involves two processes, both of which reflect the characteristics of a selenenic acid: 1) dehydrative condensation of two molecules of selenenic acid to generate a selenoseleninate intermediate [RCH2SeSe(O)CH2R], an isomer of a selenenic anhydride, and 2) subsequent β elimination of the selenenic acid from this intermediate to form a C?Se double bond, which establishes the self‐catalyzed β dehydration of the selenenic acid.  相似文献   

18.
The title compound is prepared by dehydration of Mg(ClO4)2·6H2O (silica tube, continuous vacuum, 523 K, 2 h) and characterized by powder XRD.  相似文献   

19.
Colorless and highly air‐ and moisture‐sensitive powders of M[o‐C6H4O(OH)] with M = K, Rb, or Cs have been synthesized from reaction mixtures of the appropriate alkali metal and catechol in thf. All compounds were structurally characterized by means of powder X‐ray diffraction using the Rietveld profile refinement technique including restraints for the C—C/C—O bond distances and the C—C—C angles. The atomic arrangements of M[o‐C6H4O(OH)] (K: monoclinic P21/c; Rb/Cs: orthorhombic Pbcm) are characterized by polymeric chains of [M1[4]O2[2]η6] units connected by hydrogen bonds, thereby making up layered structures similar to the one of catechol. The coordinatively unsaturated alkali metals are forming edge‐sharing MO4 pyramids and exhibit asymmetrical η6‐interactions with the phenylene rings. The symmetry of the unit cells increases with increasing size of the cation, and this results in a decrease of the monoclinic angle from 118.5° (catechol) to 93.7° (K compound), eventually leading to orthorhombic cells for the Rb and Cs compounds.  相似文献   

20.
Organometallic bases are becoming increasingly complex, because mixing components can lead to bases superior to single‐component bases. To better understand this superiority, it is useful to study metalated intermediate structures prior to quenching. This study is on 1‐phenyl‐1H‐benzotriazole, which was previously deprotonated by an in situ ZnCl2 ? TMEDA/LiTMP (TMEDA=N,N,N′,N′‐tetramethylethylenediamine; TMP=2,2,6,6‐tetramethylpiperidide) mixture and then iodinated. Herein, reaction with LiTMP exposes the deficiency of the single‐component base as the crystalline product obtained was [{4‐R‐1‐(2‐lithiophenyl)‐1H‐benzotriazole ? 3THF}2], [R=2‐C6H4(Ph)NLi], in which ring opening of benzotriazole and N2 extrusion had occurred. Supporting lithiation by adding iBu2Al(TMP) induces trans‐metal trapping, in which C?Li bonds transform into C?Al bonds to stabilise the metalated intermediate. X‐ray diffraction studies revealed homodimeric [(4‐R′‐1‐phenyl‐1H‐benzotriazole)2], [R′=(iBu)2Al(μ‐TMP)Li], and its heterodimeric isomer [(4‐R′‐1‐phenyl‐1H‐benzotriazole){2‐R′‐1‐phenyl‐1H‐benzotriazole}], whose structure and slow conformational dynamics were probed by solution NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号