首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigation of semiflexible coil‐like chains in the process of partitioning with a slit in a solvent of variable thermodynamic quality has shown two key results. For semiflexible chains in a good solvent, the effect of chain stiffness played a role only at low concentrations. However, the situation is different with interacting chains where the effect of stiffness is also observed at higher concentrations. For theta chains, the partitioning into a slit in dilute solutions is lower for semiflexible than for flexible chains, while for higher concentrations this order is reversed. The packing ability of semiflexible chains at higher concentrations is enhanced in the theta system. Interestingly, stretching of chains on penetration into the slit is observed at higher concentrations. Decomposition of free energy change on partitioning into entropy and energy contributions gives more information on the details of partitioning of these systems, especially the differentiation between dilute and moderate concentration regimes. A positive change of partitioning entropy in the theta solvent in the semidilute regime for both flexible and semiflexible chains is noteworthy. This is related to breaking favorable interactions between chains on penetration into the slit.  相似文献   

2.
The molecular arrangements and conformations of dense systems of semiflexible polymer chains near solid surfaces have been investigated by Monte Carlo simulations. At variance with the results obtained for more flexible chains, the mean square end‐to‐end distance and the mean square radius of gyration of chains in contact with the surfaces are found to be much higher than in the bulk. This is related to the increased length of the surface trains and to the increased tendency of such trains to form rod‐like strands. As a result, the first layer of polymer units in contact with the surfaces consists of two‐dimensional domains of locally parallel chain segments. The width of these domains is several times the transverse diameter of the chains.  相似文献   

3.
Monte Carlo simulations were carried out to investigate the adsorption of semiflexible chains from a semidilute solution to substrates with periodic stripes of width w. The chains are made of fused N = 10 monomers of diameter σ interacting with each other through excluded volume interactions and with the stripes via a square‐well potential of depth ε and width σ. The surface coverage was found to increase upon increasing the chain stiffness and decreases on increasing the width of the stripes. At small w, more flexible chains are adsorbed than stiff chains. Analysis of the radius of gyration for the chains showed that when w < 8σ, the component along the stripe direction is significantly larger than the others. Orientational order parameter reveals that, for small w, chains have preference to align along the stripe direction.

  相似文献   


4.
The distribution function P(S) of the radius of gyration S, the corresponding elastic free energy A(S) and the mean force were computed from simulations based on the wormlike chain (WLC) model. The relation of the S‐conjugated elastic functions to the analogous functions based on the chain vector R and their connection to the statistical‐mechanics ensembles was elucidated. Simulation data revealed that available analytical functions for P(S) fail to predict the behavior of semiflexible chains. When the power‐law function P(S) was used instead, the exponents sizeably raised with stiffness at chain expansion. The exponents deduced from elastic compression of a chain agreed fairly with the scaling exponents for chain confinement into a sphere.

  相似文献   


5.
A predictive CG model based on a conventional freely rotating chain was developed to describe semiflexible polymers on a relatively large length/time scale. Parameterization of the model requires only two material properties such as, the Kuhn length and coil density. The diameter of spherical “beads” employed in the model is used as an effective parameter that needs to be determined from preliminary data. Once determined for a particular solvent system, this parameter can then be used to model general solvent systems on a parameter‐free basis. Comparison with SANS data on dilute conjugated polymer solutions reveals that the CG polymer model can well describe material properties ranging from local rodlike segments to bulk interchain aggregates.

  相似文献   


6.
7.
8.
Summary: Monte Carlo computer simulations have been performed for model polymers confined in slits of thickness comparable to the transverse diameter of the chains. The density of polymer within the slits is allowed to vary with the slit thickness in such a way that the content of the slits is always in equilibrium with a large reservoir of bulk polymer. The calculations reveal the presence of polymer‐mediated attractive or repulsive interactions between the slit plates, oscillating with the slit thickness in good agreement with experimental results.

The base cell used in the simulations.  相似文献   


9.
Using a Monte‐Carlo simulation of a continuous space Rod Bead Model the interface properties of systems of flexible polymer chains with different sizes of monomers are investigated. An immiscible polymer blend in the strong segregation state is modeled by a double sandwich system of chains differing by an factor of two in the size of the beads and the interfacial tension is calculated by a virial theorem method. The simulation data are compared to self‐consistent mean field and experimental data. The results show that the simulation data agree very satisfactory with mean‐field results. The interfacial tension decreases for asymmetric systems in comparison to symmetric systems with comparable volume contents of monomers and interaction strengths due to a decrease of the effective interaction. The parameters of the investigated systems are close to the properties of PS, PMMA and PI melts. A comparison with experimental results yields a very good agreement with data for PS/PMMA and less satisfactory for PS/PI. Additionally to the interfacial tension we have studied the interfacial width, the deformation of polymer chains near the interface, distributions of chain ends, monomer densities and distributions of centers of mass of chains.

Snapshot of a typical configuration for chains with different monomer sizes and equal number of monomers per chain.  相似文献   


10.
Summary: Monte Carlo simulation utilizing the bond fluctuation model in conjunction with single and configurational biased Monte Carlo moves is used to study the adsorption of diblock (A‐block‐B) and alternating (A‐alt‐B) copolymers at flat, chemically heterogeneous surfaces comprising C and D domains. The main objective of this work is to address the effect of the strength of attraction between the adsorbing surface domains, D, and the copolymer adsorbing segments, B, on the copolymer's ability to recognize the chemical pattern on the surface. The results of our simulations reveal that both block and alternating copolymers have the ability to recognize the surface motif and transcribe it into the bulk material. The extent to which diblock copolymers transfer the chemical pattern from the surface to the bulk is relatively unaffected when the attractive B‐D potential is increased beyond a certain critical value. This behavior stems from the brush‐like conformation adopted by the diblock copolymer at the substrate. In contrast to the diblock copolymer, the adsorption of the alternating copolymer is influenced by the strength of the attraction between the copolymer's adsorbing segments and the adsorbing domains on the surface. Since the B segments are distributed evenly along the backbone, the alternating copolymers are more likely to adopt conformations in which the whole chain is “zipped” to the surface. The resultant entropic frustration is then alleviated through an increased formation of loops with little change to their length. Such conformational changes endow the alternating copolymer with the ability to invert the substrate pattern as the distance away from the surface is increased.

  相似文献   


11.
Distinct differences between the thermodynamics of open and closed cavities are observed in confinement free energy of macromolecules as a function of chain length and cavity radius and can be of special importance in the case of processes in spatially heterogeneous confinements encountered in various nano‐ and biostructures. In treatments of the confinement free energy, special attention is given to the equilibrium conditions (a full equilibrium for free exchange of macromolecules between cavity and bulk solution or a restricted equilibrium with number of chains in cavity constant) and associated polymer concentration changes. Increased chain stiffness brings about additional effects and complexity, for which the first results are presented here.

  相似文献   


12.
A statistical–mechanical theory of thermoreversible gelation which is formed by monodisperse telechelic associating polymers with junction multiplicity of three is developed. In the present theory, the effect of loop formation is considered. Using the theory, the properties of the system are obtained, such as the state of association of polymers, the sol–gel transition line, and the number concentration of elastically effective chains. In addition, a Monte Carlo simulation of a bead‐spring model of monodisperse telechelic associating polymers is performed. The simulation results are in good agreement with the present theoretical results. Furthermore, the shear modulus is calculated by an application of phantom network theory and compared with the experimental data. The theoretical results agree well with the experimental results. It is shown that the loop formation occurs especially in dilute regime and causes the decrease of the modulus in the regime.

  相似文献   


13.
Summary: The interface structure between two immiscible melts, a polycondensate polymer A (e.g., polycarbonate, polyester or polyamide) and a polymer B, was studied by means of Monte Carlo simulations using the bond fluctuation model. Polymer B contained a reactive end group (e.g., OH, NH2 or COOH). Copolymers were generated in‐situ at the interfaces by transreactions (alcoholysis, aminolysis or acidolysis), composing of various length of block A, depending on the position of transreaction in the polycondensate chain A. The content of copolymer at the interface increased with the time, particular fast at the early stage. Fragments of polymers A were released with an end group, reactive to polymers A. This resulted in the proceeding of internal transreactions. An asymmetric interface structure was formed. The simulation also showed that copolymers generated by interfacial transreactions increased the compatibility of the two polymers and enhanced the adhesion strength at the interfaces.

  相似文献   


14.
15.
We have used continuous space rod-bead model and an off-lattice Monte Carlo technique to investigate interfacial properties between two incompatible polymers of different stiffnesses. We have estimated the interfacial tension as well as interfacial width of all the systems studied. Further, by studying the interfacial tension and/or interfacial width in the weak segregation limit one can estimate the critical value of temperature at which two different kinds of polymers mix. In the present work, we have estimated the critical value of temperature at which the polymers mix by studying the interfacial width in the weak segregation limit for the different systems containing the flexible and semi-flexible polymers of different stiffnesses.  相似文献   

16.
17.
18.
19.
采用弹性竿模型 (Elasticrodmodel) ,用MonteCarlo方法对DNA分子的构象进行研究 .通过计算发现 ,DNA分子的能量是由弯曲势能EB 和扭转势能ET 两部分组成 ,通常EB 比ET 大一至两个数量级 .同时给出了均方回转半径与链长之间的关系为〈R2g〉 =1 1 69 5 -3 5×n +0 0 2 5×n2 ,它体现了DNA分子结构的特点 .验证了公式Lk=Wr+Tw ,得出Lk与Wr比较接近的结论 ,考虑DNA分子的构型 ,意味着DNA分子容易被弯曲而不易被扭转 ,但随着连接系数的增加 ,DNA被扭转的几率也在增加 .这为分析DNA分子的结构特征提供了一种新方法  相似文献   

20.
In order to control the branching behavior of polymers, the comparison of experimental and simulated data is important. The utilization of a nonlattice, self‐avoiding necklace‐bead random walk simulator is reported, which allows for the calculation of radii of gyration r g of polymer molecules with branched structures. The focus is on sensitivity toward short‐chain branches, long‐chain branches (LCBs), and the copolymer composition. Using only two parameters—the size of monomer beads and the minimum angle between three subsequent beads—a fast and reliable parameter fit procedure based on experimental data is described. The procedure is exemplarily shown for copolymers of vinylidene fluoride and hexafluoropropene (HFP) with HFP contents in the copolymer of at most 0.3 and is easily transferable to other polymers that may be analyzed by size‐exclusion chromatography/multiangle laser light scattering close to θ conditions. Applying the Zimm–Stockmayer equation to simulated r g data allows for comparing the “effective” number of LCBs with the number of LCBs given by kinetic simulations. A tool for better estimation of rate coefficients associated with the formation of short‐ and long‐chain branches is provided.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号