首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La3Ga5.5Ta0.5O14 (LGT) crystal was grown by using the Czochralski method. The as‐grown crystal is transparent, free from inclusions and with no cracks. Specific heat, thermal expansion, dielectric constants, transmission spectrum and optical damage threshold of LGT have been measured, and the results show general properties of LGT are similar to that of La3Ga5SiO14 (LGS) crystal. The experiment to research the Q‐switch properties of LGT has been performed and the results show LGT possesses smaller electrooptic coefficients than that of LGS and may not be an ideal material used as a Q‐switch. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
测量了(yxf)-30°切La3Ga5SiO14(LGS)晶体30~300℃温度范围内的谐振特性.室温时压电常数d11和d14分别为5.59×10-12C/N和-5.01×10-12C/N.在室温至300℃范围内(yxl)-30°切La3Ga5SiO14晶片厚度切变振动的谐振频率和机电耦合系数k′26都随温度升高而升高,因此压电常数d11和d14也随温度升高而略有升高.  相似文献   

3.
Refractive indices and effective electro‐optic coefficient γc of (1–x)Pb(Zn1/3Nb2/3)O3xPbTiO3 (PZN‐xPT, x = 0.05, 0.09 and 0.12) single crystals were measured at 532 nm wavelength. Orientation and temperature dependences of the electro‐optic coefficient were investigated. Large electro‐optic coefficient (γc = 470 pm/V) was observed in [001]‐poled PZN‐0.09PT crystal. More importantly, γc of tetragonal PZN‐0.12PT is almost unchanged in a temperature range −20 ∼ 80 °C. The γc of PZN‐xPT single crystals are much higher than that of widely used electro‐optic crystal LiNbO3 (γc = 20 pm/V). These results show that PZN‐xPT single crystals are very promising materials for electro‐optic modulators in optical communications.  相似文献   

4.
The effects of Er3+ doping concentration and calcination were examined on the fluorescence properties of La3Ga5.5Nb0.5O14 (Er:LGN) nanoparticles for the first time. High quality Er:LGN nanoparticles were synthesized by sol‐gel method. The room temperature fluorescence spectra showed a green emission, which can be attributed to 2H11/24I15/2 and 4S3/24I15/2 transition. The relationship between the relative emission intensity and the doping concentration was investigated. The maximum of the Er3+ doping concentration in LGN nanopowders is 2.0%. The fluorescent lifetime of 2.0% Er:LGN nanoparticles is 1.45ns. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Single crystals of Sr3NbAl1.5Ga1.5Si2O14 (SNAGS) with langasite structure have been successfully grown by Czochralski method. The X‐ray diffraction (XRD) verified that the as‐grown crystal was isostructural with A3BC3D2O14 structure and the lattice parameters were calculated as follows: a = 8.242 Å, c = 5.041 Å, V = 296.6 Å3. The piezoelectric coefficient d11 was 5.7pC/N, which was 2.47 times of α‐quartz (d11=2.31pC/N). The electric resistivity was up to 3.04×106 Ωcm at 700 °C for X‐cut sample. In addition, the transmission spectrum of the SNAGS crystal showed that it had a high transmittance (>80%) in the range of 350‐800 nm and exceeded 90% above 520 nm. These results suggest that the SNAGS crystals have potential applications in high‐temperature piezoelectric sensors and optical techniques. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Single crystals of Erbium (Er) doped La3Ga5SiO14 (LGS) have been grown along c‐axis by using the Czochralski method. The absorption and fluorescence spectra of LGS: Er3+ single crystals have been measured and analyzed according to the Judd‐Ofelt theory. When applied, the following spectral parameters have been obtained: intensity parameters Ωt, Ω2= 2.741674×10‐20cm2, Ω4= 0.66934×10‐20 cm2 and Ω6= 0.592591×10‐20 cm2, radiative transition probabilities AJ,J”, PJ,J”. The radiative lifetime of levels 4I13/2, 4H9/2, 4S3/2 are 11.333ms, 0.447ms and 0.704ms, respectively. The fluorescence branching ratios and the integrated emission cross sections are also calculated. The results suggest that LGS: Er crystals have potential applications as a laser material. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
New and high quality piezoelectric crystals La3Ga5SiO14 (LGS) grown by the Czochralski method in a Platinum or Iridium crucible are reported in this paper. The growth defects in the LGS crystals were investigated by Transmission electron microscopy (TEM). It was found that cracks, inclusions, grain boundary and thermal stress in the LGS crystals. Their formation mechanisms and the method of eliminating these defects are discussed. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This study examined the potential applications of microwave dielectric properties of La(1‐2x/3)Bax(Mg0.5Sn0.5)O3 ceramics in rectenna. The La(1‐2x/3)Bax(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid‐state method with various sintering temperatures. An apparent density of 6.62 g/cm3, a dielectric constant of 20.3, a quality factor of 51,700 GHz, and a temperature coefficient of resonant frequency of ‐78.2 ppm/K were obtained for La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
介绍了一类性能优异、结构有序的新型材料--A3BGa3Si2O14(A=Ca,Sr;B=Nb,Ta)单晶,总结了其研究进展,并对该类晶体的生长、结构、热学、光学和压电性能进行了描述.  相似文献   

10.
In this study, the microwave dielectric properties of (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system prepared by the conventional solid‐state method have been investigated for application in mobile communication. It was found that the diffraction peaks of (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system shift to higher angles as x increases from 0.2 to 0.4. It was also found that the X‐ray diffraction patterns of the 0.8La(Mg0.5Sn0.5)O3‐0.2(Sr0.8Ca0.2)3Ti2O7 ceramics exhibited no significant phase difference at different sintering temperatures. The average grain size of the (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system decreased from 6.4 to 4.3 μm as the value of x increased from 0.2 to 0.4 sintered at 1550 °C for 4 h. The dielectric constant increased from 26.6 to 35.9 and the quality factor (Q×f) decreased from 31,600 to 23,300 GHz for (1‐x)La(Mg0.5Sn0.5)O3‐x(Sr0.8Ca0.2)3Ti2O7 ceramic system as the x value increases from 0.2 to 0.4 sintered at 1550 °C for 4 h. The average value of temperature coefficient of resonant frequency (τf) increased from ‐18 to +8 ppm/ K as the x value increases from 0.2 to 0.4. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Pure and homogeneous single crystals of orthorhombic mullite‐type Bi2M4O9 (M = Al3+, Ga3+, Fe3+), and a mixed Bi2Fe1.7Ga2.3O9 crystal from an equimolar Ga/Fe composition were grown by the top seeded solution growth (TSSG) method. All these compounds melt incongruently in the range of about 800 and 1100 °C. In case of bismuth gallate and ferrate inclusion‐free crystals with dimensions up to several cubic centimeters can be grown. Limited solubility in Bi2O3 and the high steepness of the liquidus curve are the reasons for getting only small imperfect bismuth aluminate crystals. In contrast to ceramic materials preparation reported in literature, divalent calcium and strontium could not be incorporated into the mullite‐type structure during the melt growth process. Several fundamental physical properties like heat capacity, thermal expansion, heat conductivity, elastic constants, high‐pressure behavior and oxygen diffusivity were determined by different research groups using single‐crystalline samples from the as‐grown materials. Furthermore, the refractive indices of Bi2Ga4O9 were measured in the range of 0.430 and 0.700 μm. Such as many other bismuth containing compounds the refractive indices of Bi2Ga4O9 are larger than 2, and Bi2Ga4O9 is an optic biaxial positive crystal. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
采用固相法制备了0.96(K0.49 Na0.51)(Nb0.97-xTa0.03Sbx) O3-0.04Bi0.5(Na0.8K0.2)0.5ZrO3(0.96KNNTSx-0.04BNKZ,x=0,0.01,0.02,0.03,0.04)无铅压电陶瓷,研究了Sb掺杂量对0.96KNNTSx-0.04BNKZ陶瓷相结构、微观结构和电性能的影响规律.X射线衍射(X-ray Diffraction,XRD)分析结果表明:0.96KNNTSx-0.04BNKZ陶瓷具有纯钙钛矿结构,随着Sb掺杂量x的增加,陶瓷由正交-四方两相共存逐渐转变为四方相,在x≤0.01时,陶瓷为正交-四方两相共存的多型相转变(Polymorphic Phase Transition,PPT)结构,而当x≥0.02时,陶瓷则转变为四方相结构.在PPT向四方相转变的组成边界x=0.02处,陶瓷具有优异的电性能:压电常数d33=345 pC/N,机电耦合系数kp=39.2;,机械品质因数Qm=51,介电常数ε33T/ε0=1520,介电损耗tanδ =2.7;,剩余极化强度Pr=15.4 μC/cm2,矫顽场Ec =1.09kV/mm,居里温度Tc=275℃.  相似文献   

13.
The refractive indices of 0.9Pb(Zn1/3Nb2/3)O3‐0.1PbTiO3 single crystal at different wavelengths have been measured by the minimum deviation method at room temperature, and their dispersion equations are obtained. The parameters connected to the energy band structure are obtained by fitting single‐oscillator dispersion equation. Despersion energies are found to take on covalent crystal values. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
采用固相烧结法制备了(Ba0.85Ca0.15)(Ti09Zr0.1-xSnx) O3(BCZTS)无铅压电陶瓷.研究了不同含量SnO2(x=0,0.02,0.04,0.06,0.08)对BCZT无铅压电陶瓷相结构、压电性能、介电性能和铁电性能的影响,并利用XRD、SEM、准静态d33测试仪等表征样品.结果表明,所有样品均为单一钙钛矿结构.当掺杂x=0.02时,(Ba0.ss Ca0.1s)(Ti0.9 Zr0.1-xSnx) O3无铅压电陶瓷材料的综合性能优异:d33 =553 pC/N,kp=49;,εr~ 7474(l kHz),tanδ~1.5; (lkHz),Pr=6.06 μC/cm2,Ec=2 kV/cm,利用Curie-Weiss定律对该实验结果进行拟合,发现x=0.02的样品的介电弛豫特征更为明显.  相似文献   

15.
Large single crystals of optical quality of the non‐centrosymmetric orthorhombic potassium rare earth nitrate mixed crystals K2(La1–x Cex)(NO3)5 · 2 H2O were grown at 38 °C from diluted HNO3. For crystals with x = 0.0, 0.19, 0.38 and 0.66 refractive indices and their dispersion were determined with an error less than 1 · 10–4 in the wavelength range 0.404 – 1.083 μm by the prism method. Phase matching conditions for collinear SHG frequency conversion were analysed in detail, including calculation of the effective nonlinear optical susceptibility. By an appropriate choice of the fraction x of cerium the mixed crystals K2(La1–x Cex)(NO3)5 · 2 H2O allow an adjustment of non‐critical type I phase matching conditions to a desired wavelength of the fundamental wave within the range 1.055(4) – 1.107(6) μm. Non‐critical type II phase matching can be tuned in the wavelength range 0.949(2) – 0.931(2) μm. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Large single crystals of the non‐centrosymmetric hydrated tetraborates Na2[B4O5(OH)4] . 3H2O (Tincalconite) (point group 32) and K2[B4O5(OH)4] . 2H2O(point group 222) were grown from aqueous solutions and the linear optical properties (refractive indices between 365 nm and 1530 nm and unpolarized absorption spectra) as a basis for nonlinear optical investigations were determined. The uniaxial positive sodium salt is not phase matchable; in the orthorhombic potassium compound type I phase matching is possible in the near infrared region. Thermal investigations indicate a phase transition at ≈285 K for Na2[B4O5(OH)4] . 3H2O.  相似文献   

17.
Experimental results are presented regarding the variation of the atomic magnetic moment, the Curie temperature and the crystallization temperature of Fe78‐cMcSi9B13 (M = V, Nb, Mo) and Fe75‐cMcSi9B16 (M = Ni, Cu, Pd, Ag) amorphous alloys. Efforts were made to explain qualitatively the phenomena, based on the behavior of the amorphous alloys when various admixtures substitute Fe atoms.  相似文献   

18.
The samples of (RE,M)2Ca0.5Sr0.5Cu2O6+d are prepared by solid state reaction method. The single phase boundary of RE and M in (RE,M)2Ca0.5Sr0.5Cu2O6+d is 1.0 ∼2.0 and 0 ∼1.0 respectively. In (Pr,M)2Ca0.5Sr0.5Cu2O6+d, the phase boundary of Sr is 0 ∼1.0. The structure of (RE,M)2Ca0.5Sr0.5Cu2O6+d belongs to the structure type of 212 cuprate superconductors with space group I4/mmm.  相似文献   

19.
The method to decrease of the porosity (densification) of crystalline spherical particles of the solid substitution solution, obtained by the method of precipitation from aqueous solution followed by low temperature crystallization of the amorphous intermediate product was proposed. The comparative analysis of morphology and structure of the particles before and after densification have been carried. It has been established that porosity of (Y1‐xEux)2O3 particles has decreased 5 times compared to their initial state. It has been shown that densification process of the (Y1‐xEux)2O3 spherical particles changes their morphology and structure: the size of the crystals doubles, the number and area of crystalline boundaries decrease, the intercrystalline spaces, which forming pores, are almost absent.  相似文献   

20.
Large and high‐quality single crystals of both Pb‐free and Pb‐doped high temperature superconducting compounds (Bi1‐xPbx)2Sr2Ca2Cu3O10‐y (x = 0 and 0.3) were grown by means of a newly developed “Vapour‐Assisted Travelling Floating Zone” technique (VA‐TSFZ). This modified zone‐melting technique was realised in an image furnace and allowed for the first time to grow Pb‐doped crystals by compensating for the Pb losses occurring at high temperature. Crystals up to 3×2×0.1 mm3 were successfully grown. Post‐annealing under high pressure of O2 (up to 10 MPa at T = 500°C) was undertaken to enhance Tc and improve the homogeneity of the crystals. Structural characterisation was performed by single‐crystal X‐ray diffraction (XRD) and the structure of the 3‐layer Bi‐based superconducting compound was refined for the first time. Structure refinement showed an incommensurate superlattice in the Pb‐free crystals. The space group is orthorhombic, A2aa, with cell parameters a = 27.105(4) Å, b = 5.4133(6) Å and c = 37.009(7) Å. Superconducting studies were carried out by A.C. and D.C. magnetic measurements. Very sharp superconducting transitions were obtained in both kinds of crystals (ΔTc ≤ 1 K). In optimally doped Pb‐free crystals, critical temperatures up to 111 K were measured. Magnetic critical current densities of 2�105 A/cm2 were measured at T = 30 K and μ0H = 0 T. A weak second peak in the magnetisation loops was observed in the temperature range 40‐50 K above which the vortex lattice becomes entangled. We have measured a portion of the irreversibility line (0.1‐5 Tesla) and fitted the expression for the melting of a vortex glass in a 2D fluctuation regime to the experimental data. Measurements of the lower critical field allowed to obtain the dependence of the penetration depth on temperature: the linear dependence of λ(T) for T < 30 K is consistent with d‐wave superconductivity in Bi‐2223. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号