首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Herein, the concept of “inverted” (the mode “molecules mainly interact with cations”) deep eutectic solvents (DESs) is proposed. A strategy to form inverted DESs by host‐guest interactions was developed, and thus numerous DESs could be designed and formed by a combination of host and guest molecules. These liquids are expected to be used as nonaqueous electrolytes in potassium‐ion batteries or other fields for further exploration.  相似文献   

5.
The simple combination of PdII with the tris‐monodentate ligand bis(pyridin‐3‐ylmethyl) pyridine‐3,5‐dicarboxylate, L , at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the “spiro‐type” Pd1L2 macrocycle, 1 , and the quadruple‐stranded Pd3L4 cage, 2 , respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.  相似文献   

6.
We report the synthesis of a hydrophilic copolymer with one polyethylene glycol (PEG) block and one β‐cyclodextrin (β‐CD) containing block by a “click” reaction between azido‐substituted β‐CD and propargyl flanking copolymer. 1H NMR study suggested a highly efficient conjugation of β‐CD units by this approach. The obtained copolymer was used as a host macromolecule to construct assemblies in the presence of hydrophobic guests. For assemblies containing a hydrophobic polymer, their size can be simply adjusted by simply changing the content of hydrophobic component. By serving as a guest molecule, hydrophobic drugs can also be loaded accompanying the formation of nanoparticles, and the drug payload is releasable. Therefore, the copolymer synthesized herein can be employed as a carrier for drug delivery.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
After having reviewed some pioneer integral approximations closely related to Rüdenberg's expansions of one‐ and two‐electron orbital products, we apply the previously described “Implicit Multi‐Center Integration” techniques on Roothaan's “restricted” Fock‐matrix components over standard atomic orbital bases. The resulting compact forms are very similar to the well‐known “Wolfsberg–Helmholz Conjecture” of “Extended‐Hückel Theory,” which relates the various off‐diagonal matrix elements of “restricted” Fock‐type to their corresponding diagonal counterparts. In this way, a “nonempirical Extended‐Hückel Theory” can be created. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
Well‐defined macromolecules have been obtained through free‐radical cyclopolymerization and cyclocopolymerization of difunctional and acrylic‐like monomers, which contained “push‐pull” supramolecular chromophores, able to form 1:1 complexes with Eu3+ ions in solution. The monomeric molecular modules are built around bismalonate crown ethers in a convergent fashion, in which one of the malonate moiety is derivatized as the ylidene malonate push‐pull fragment, and the other malonate moiety is elaborated to introduce two polymerizable and acrylic‐like substituents. The free‐radical induced cyclopolymerization of these monomers, or their cyclocopolymerization with UV/Vis “silent” but structurally related monomers, afforded macromolecular architectures characterized by GPC, NMR and DSC techniques. UV/Vis titration studies, performed with Eu(OTf)3 as the supramolecular probe, revealed how adjacent chromophores within the polymeric backbone are virtually independent from each other, and how the binding ability towards the probe of these multivalent, highly packed cyclopolymeric architectures, although reduced, is still clearly detectable. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5202–5213, 2008  相似文献   

20.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号