首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of magnetization on the complex modulus of kappa-carrageenan magnetic gels have been investigated. The magnetic gel was made of a natural polymer, kappa-carrageenan, and a ferrimagnetic particle, barium ferrite. The complex modulus was measured before and after magnetization of the gel by dynamic viscoelastic measurements with a compressional strain. The gels showed a giant reduction in the storage modulus of approximately 10(7) Pa and also in the loss modulus of approximately 10(6) Pa due to magnetization. The reduction increased with increasing volume fraction of ferrite, and it was nearly independent of the frequency. It was also found that the change in the modulus was nearly independent of the magnetization direction and irradiation time of the magnetic fields to the gel. The magnetic gels demonstrating the giant reduction in the dynamic modulus showed a large nonlinear viscoelastic response. It was observed that the magnetic gel was deformed slightly due to magnetization. The observed giant complex modulus reduction could be attributed to the nonlinear viscoelasticity and deformation caused by magnetization. Magnetism, nonlinear viscoelasticity, and effects of magnetization on the morphological and shape changes were discussed.  相似文献   

2.
Summary: Effects of magnetization on the complex modulus of κ‐carrageenan magnetic gels have been investigated. The magnetic gel was made of a natural polymer, κ‐carrageenan, and a ferromagnetic particle, barium ferrite. The complex modulus of the magnetic gel was investigated by dynamic viscoelastic measurements with a compressional strain. It was first observed that the magnetic gels showed giant storage modulus reduction ≈107 Pa before and after magnetization. The reduction was nearly independent of the frequency, and it increased with increasing the volume fraction of the ferrite. The maximum reduction in the storage modulus reached 14.9 MPa which corresponds to 76.5% of the modulus before magnetization. It was also found that the change in the modulus was nearly independent of a magnetization direction. Magnetism and morphology of the magnetic gels were also presented.

Strain dependence of the storage modulus at 1 Hz for κ‐carrageenan gel (□) and its magnetic gel before (○) and after (•) magnetization (ϕ = 0.39). The geometry of magnetization and strain directions is perpendicular.  相似文献   


3.
运用穆斯堡尔效应,对Sm0.88Dy0.12Fe2合金的易磁化方向的变化进行了研究。结果表明;随着温度的升高,其易磁化方向从「110」渐变地转向「111」,在153至213K温度范围内,「110」和「111」两者共存,而并非由「110」其一温度突变至「111」。  相似文献   

4.
Recent work on the heat capacity of HoAl2 revealed an anomaly at 20°K, the origin of which was not understood. It is now suggested that this anomaly originates from a change in the easy direction of magnetization brought about by a combined effect of crystalline electric field and exchange field. Calculations by the equivalent operator method have been performed employing reasonable combinations of crystal field parameters. The exchange field acting on Ho3+ is determined in a self-consistent manner. Results are presented to illustrate the expected occurrence of a change in the easy direction of magnetization for a range of crystal field parameters which are compatible with those found for other RAl2 compounds. The magnetic moment on Ho3+ ion calculated on the basis of this model is in agreement with experiment.  相似文献   

5.
The particle dispersibility of barium ferrite and iron oxide magnetic particles in carrageenan gels was investigated, and the influence of the dispersibility on the giant reduction in the dynamic modulus of the gels was discussed. The gels containing barium ferrite demonstrated giant reductions in the storage Young's modulus on the order of 10 (5) Pa due to magnetization; however, small reductions in the storage modulus of less than 10 (4) Pa were observed for the gels containing iron oxide. The storage modulus of gels with barium ferrite did not follow the Krieger-Dougherty equation above volume fractions of 0.06, indicating the heterogeneous dispersion of the magnetic particles; however, the modulus of the gels with iron oxide satisfied the equation at all volume fractions, suggesting the random dispersion of the particles. It was noted that the gels with barium ferrite demonstrated enhanced nonlinear viscoelasticity and a large value of the loss tangent, while the gels with iron oxide exhibited weak nonlinear viscoelasticity and a small value of the loss tangent. Magnetic measurements indicated high values of remanent magnetization for barium ferrite and low values for iron oxide. After magnetization at 1 T, the magnetic gels with barium ferrite became elongated parallel to the magnetic field and shrunk perpendicular to the field. In contrast, the magnetic gels with iron oxide did not undergo a marked deformation. These results strongly indicate that the giant reduction in the storage modulus requires both enhanced nonlinear viscoelasticity and magnetostriction which originate from the particle dispersibility. The relationship between the dispersibility of magnetic particles and the giant reduction in the storage modulus is discussed using rheological and morphological data.  相似文献   

6.
As a tribute to the scientific work of Professor Gareth Thomas in the field of structure-property relationships this paper delineates a new possibility of Lorentz transmission electron microscopy (LTEM) to study the magnetic properties of soft magnetic films. We show that in contrast to the traditional point of view, not only does the direction of the magnetization vector in nano-crystalline films make a correlated small-angle wiggling, but also the magnitude of the magnetization modulus fluctuates. This fluctuation produces a rapid modulation in the LTEM image. A novel analysis of the ripple structure in nano-crystalline Fe-Zr-N film corresponds to an amplitude of the transversal component of the magnetization deltaMy of 23 mT and a longitudinal fluctuation of the magnetization of the order of deltaMx = 30 mT. The nano-crystalline (Fe99Zr1)1-xNx films have been prepared by DC magnetron reactive sputtering with a thickness between 50 and 1000 nm. The grain size decreased monotonically with N content from typically 100 nm in the case of N-free films to less than 10 nm for films containing 8 at%. The specimens were examined with a JEOL 2010F 200 kV transmission electron microscope equipped with a post column energy filter (GIF 2000 Gatan Imaging Filter). For holography, the microscope is mounted with a biprism (JEOL biprism with a 0.6 microm diameter platinum wire).  相似文献   

7.
The flexibility of the structure of Prussian blue analogues and its ability to incorporate a variety of competing magnetic interactions have allowed the design of mixed ferro-ferrimagnets, which span the whole spectrum of magnetic behavior, including the rare phenomenon of magnetization reversal in response to a change in temperature. Hydrostatic pressure is used here to induce multiple reversals of the direction of the spontaneous magnetization in the trimetallic Prussian blue analogue, Rb0.64Ni0.31Mn0.87[Fe(CN)6].2.8H2O. Remarkably, the magnetic response is extremely sensitive to pressure, and the magnetization flips from positive to negative and back to positive in a very narrow pressure range (0 < P < 0.6 kbar). A further increase in pressure to 4.0 kbar induces an internal redox reaction, and the magnetic order switches from ferrimagnetic to bulk ferromagnetism.  相似文献   

8.
Quasi-static (˜10−3s−1) and high strain rate (>500 s−1) compression behavior of an S2-glass woven fabric/vinyl ester composite plate was determined in the in-plane and through-thickness directions. In both directions, modulus and failure strength increased with increasing strain rate. A higher strain rate sensitive modulus was found in the through-thickness direction while a higher strain rate sensitive failure strength was found in the in-plane direction. In the in-plane direction, the failure mode was observed to change from splitting followed by “kink banding” (localized fiber buckling) to predominantly splitting at increasing strain rates, while it remained the same in the through-thickness direction.  相似文献   

9.
The mechanical properties of the polysiloxane dizwitterionomers change dramatically with a tenfold increase in the ionic content, from soft, weak materials to hard, strong rubbers. The effects of the zwitterion concentration and the unique morphology on the elastic modulus can be explained by treating this series of ionomers as composites. Macro- and microfibrillation were observed in 1- and 2-mole % zwitterion samples before the ultimate break and are probably due to reorientation of the ionic domains parallel to the stress direction so that cracks could propagate in the direction of the stress.  相似文献   

10.
We report on measurements of a magnetorheological model fluid created by dispersing nonmagnetic microparticles of polystyrene in a commercial ferrofluid. The linear viscoelastic properties as a function of magnetic field strength, particle size, and particle size distribution are studied by oscillatory measurements. We compare the results with a magnetostatic theory proposed by De Gans et al. [Phys. Rev. E 60, 4518 (1999)] for the case of gap spanning chains of particles. We observe these chain structures via a long distance microscope. For monodisperse particles we find good agreement of the measured storage modulus with theory, even for an extended range, where the linear magnetization law is no longer strictly valid. Moreover we compare for the first time results for mono- and polydisperse particles. For the latter, we observe an enhanced storage modulus in the linear regime of the magnetization.  相似文献   

11.
Solid-state extruded polyethylene fibers have been prepared, with a wide range of draw ratios and constant processing temperature. The draw ratios vary from 4 up to 30, and the processing temperature was always 398 K. The extruded material behaves anisotropically, owing to the high degree of chain orientation in the drawing direction. The modulus and linear expansion coefficients in the fiber axis direction have been measured, over a wide temperature range, from 140 K up to 320 K. These two properties are closely related to the degree of structural continuity of the fibers. A fibrous structure model is proposed to explain the temperature effects and the values obtained for the modulus and expansion coefficients, in terms of crystallinity and volumetric fraction of extended-chains structure. At least three relaxation processes can be identified which cause the structural continuity of the fibers to change with temperature.  相似文献   

12.
Two sets of dynamic mechanical property data and some stress relaxation data for semicrystalline, linear polyethylene are treated by data reduction methods previously described. These data can be represented by a master plot of reduced modulus versus reduced frequency and two sets of temperature-dependent shift factors. The first of these factors reflects the change of viscoelastic relaxation times with temperature. The second represents a separable change of modulus with temperature which applies over the entire time or frequency range of the experiments. This change is larger and in the opposite direction to that found applicable in the behavior of noncrystalline plastics and rubbers. The two sets of dynamic data show the same frequency–temperature dependence which can be represented by an activation energy of 22 kcal./mole. Small differences in the modulus–temperature dependence are attributed to differences in molecular weight or annealing conditions. The stress relaxation data superposes to a curve in good agreement with the dynamic data but with a factor of 20 difference in time scale. This difference is attributed to the finite strains used in the stress relaxation measurements. Such strains might be expected to increase free volume in simple extension deformations and so accelerate the relaxation.  相似文献   

13.
The sensitive detection of dilute solute spins is critical to biomolecular NMR. In this work, a spin amplifier for detecting dilute solute magnetization is developed using the radiation damping interaction in solution magnetic resonance. The evolution of the solvent magnetization, initially placed along the unstable -z direction, is triggered by the radiation damping field generated by the dilute solute magnetization. As long as the radiation damping field generated by the solute is larger than the corresponding thermal noise field generated by the sample coil, the solute magnetization can effectively trigger the evolution of the water magnetization under radiation damping. The coupling between the solute and solvent magnetizations via the radiation damping field can be further improved through a novel bipolar gradient scheme, which allows solute spins with chemical shift differences much greater than the effective radiation damping field strength to affect the solvent magnetizations more efficiently. Experiments performed on an aqueous acetone solution indicate that solute concentrations on the order of 10(-5) that of the solvent concentration can be readily detected using this spin amplifier.  相似文献   

14.
The tensile strength values, tensile moduli (measured with an Instron dynamometer) and sonic moduli of a monoaxially oriented polypropylene film were determined. Anisotropy was defined by the ratio between the tensile strength or modulus values in the direction of drawing and in the perpendicular direction. The difference amounting to an order of magnitude between the anisotropy of tensile strength and of the sonic modulus is explained by the existence of cracks between bundles of microfibrils. Anisotropy of the modulus determined with the instron dynamometer is lower than that of tensile strength, but higher than that of the sonic modulus. This is a consequence of the failure of the system which occurs in the transverse direction already at low deformations.  相似文献   

15.
The dynamics of magnetization is theoretically studied for a system of ferromagnetic nanoparticles suspended in a gel (a ferrogel). The Brownian motion impedes orientation of the particles determined by the elastic matrix. Therefore, the main parameter of the medium determining the static magnetic susceptibility value is the ratio of the modulus of elasticity of matrix to the temperature. The dispersion factors of dynamic susceptibility components include combinations of the velocities of several processes: elastic restoration of the orientation of particles, their rotational Brownian diffusion, and viscous relaxation of the inertial motion. The absorption of the energy of the alternating field in a ferrogel is found to be lower than in an isotropic magnetic suspension. The effect of the interaction of elastic and Brownian forces on the effective times of ferrogel magnetization relaxation is monitored.  相似文献   

16.
丙酮-环己烷溶液磁饱和与磁化效果的紫外光谱研究   总被引:1,自引:0,他引:1  
作者研究了丙酮- 环己烷溶液磁化前后、不同磁化时间以及磁化后放置不同时间的紫外光谱,发现有磁饱和现象与较长时间的磁化效果存在,这对于研究磁场影响化学反应的机理提供了实验依据  相似文献   

17.
Mechanical properties of protein crystals and aggregates depend on the conformational and structural properties of individual protein molecules as well as on the packing density and structure within solid materials. An atomic force microscopy (AFM)-based approach is developed to measure the elastic modulus of small protein crystals by nanoindentation and is applied to measure the elasticity of insulin crystals. The top face of the crystals deposited on mica substrates is identified as the (001) face. Insulin crystals exhibit a nearly elastic response during the compression cycle. The elastic modulus measured on the top face has asymmetric distribution with a significant width. This width is related to the uncertainty in the deflection sensitivity. A model that takes into account the distribution of the sensitivity values is used to correct the elastic modulus. Measurements performed in aqueous buffer on several crystals at different locations with three different AFM probes give a mean elastic modulus of 164 +/- 10 MPa. This value is close to the static elastic moduli of other protein crystals measured by different techniques that are usually measured in the range from 100 MPa to 1 GPa. The measured modulus of insulin crystals falls between the elastic modulus values of insulin amyloid fibrils measured previously at two orthogonal directions (a modulus of 14 MPa was measured by compressing the fibril in the direction perpendicular to the fibril axis, and a modulus of 3.3 GPa was measured in the direction along the fibril axis). This comparison indicates the heterogeneous structure of fibrils in the direction perpendicular to the fibril axis, with a packing density of the amyloid fibril core that is higher than the average packing density in insulin crystals. The mechanical wear of insulin crystals is detected during AFM measurements. In nanoindentation experiments on insulin crystal, the compressive load by the AFM tip ( approximately 1 nN, corresponding to a pressure of around 5 MPa) occasionally removes protein molecules from the top or the second top layer of insulin crystal in a sequential manner. The molecular model of this surface damage is proposed. In addition, the removal of the multiple layers of molecules is observed during the AC-mode imaging in aqueous buffer. The number of removed layers depends on the scan size.  相似文献   

18.
Glass transition temperature and tan delta (the ratio of loss modulus to storage modulus) are indispensable parameters for determining appropriate application range of ETFE foils. In this study, ETFE foils in terms of specimen number, material direction and thickness were investigated with dynamic mechanical analysis (DMA) over a temperature range of -70-100 °C at frequencies of 0.1, 1, and 10 Hz. Glass transition temperatures were obtained with storage modulus, loss modulus and tan delta curves. It is found that frequency effect on glass transition temperature was proportional and that frequency effect was more significant than material direction effect. Moreover, a comparison study showed that elastic modulus determined with quasi-static experiments was greater than storage modulus calculated with dynamic mechanical experiments. To propose suitable glass transition temperature ranges for engineering application, an approach to determine confidence interval based on statistical analysis was employed. The resulting intervals with confidence coefficient of 95% were 31.2–32.7 °C, 60.5–66.4 °C and 79.6–83.3 °C for storage modulus, loss modulus and tan delta, respectively. In general, this study could provide useful observations and values for evaluating dynamic mechanical properties of ETFE foils.  相似文献   

19.
The spin–spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates.  相似文献   

20.
超拉伸聚乙烯的弹性模量和导热性能   总被引:8,自引:0,他引:8  
为了揭示聚合物分子链伸展、取向的本征特性,发展了两个新的测量方法和实验装置,用于研究拉伸比高达200的超拉伸聚乙烯凝胶的弹性性能、传热性能和聚合物结构的关系.应用激光脉冲热致超声法给出材料拉伸方向和横向杨氏模量,应用激光脉冲光热辐射法给出拉伸方向,横向和厚度方向的导热系数.随拉伸比λ的增加,轴向杨氏模量急剧的增加,而横向的仅有少许减小.导热系数具有相似的特性.本文发现当λ=200时,这种拉伸取向聚乙烯的轴向模量可达钢的80%,而导热系数甚至可达2倍,直至成为热的良导体,这是由于在高拉伸比时形成了相当数量的伸展分子链构成的针状晶体———晶桥.本文提出晶桥作为短纤维分散相的取向聚合物的结构模型,对于超拉伸聚乙烯的上述特性可以进行统一描述和定量化分析,和实验结果很好符合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号