首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Brij‐35 [polyoxyethylene(23) lauryl ether] stabilised palladium nanoparticles, obtained on attempted sonochemical reduction of PdCl2 by sodium sulfite in water under Argon, instantaneously oxidized to PdO. The particles obtained were stable and have narrow size distribution with an average size of 10 nm diameter. PdO nanoparticles were reduced to Pd nanoparticles in an autoclave by treatment with 50 bar hydrogen at 140 °C. The catalytic behaviour of Pd nanoparticles, thus obtained, is unusual in comparison with conventional Pd catalysts. The nanoparticles were characterized by UV‐Vis spectroscopy, TEM and their X‐ray Absorption Near Edge Structure (XANES) at the Pd‐L‐III edge.  相似文献   

2.
A comparative study of the optical properties of organic fluorescent nanoparticles fabricated by laser ablation (NPs‐LA), reprecipitation (NPs‐RP), and microemulsion (NPs‐ME) methods is presented. These nanoparticles contain a fluorene‐based p‐conjugated molecule (BT2). Distinctive electronic transitions are observed in samples due to the specific way in which the molecule BT2 is assembled in each type of nanoparticles; for instance, transitions involved in absorption and emission spectra of NPs‐LA result in blueshifting with respect to the molecular solution of BT2, whereas redshifting is observed in NPs‐RP and NPs‐ME. Further, the results show that under infrared excitation, the aqueous suspensions of NPs‐LA exhibit the highest fluorescence induced by two‐photon absorption (≈790 GM at 740 nm), as well as the best photostability, compared with aqueous suspensions of NPs‐RP and NPs‐ME. The nanoparticles synthetized by the three aforementioned methods are employed as exogenous agents for the visualization of human cervical cancer cell line (HeLa) using confocal and two‐photon microscopy. Under similar experimental conditions, it is found that microscopy images of the best quality are obtained with NPs‐LA. These results show that laser ablation is a suitable technique for the fabrication of organic fluorescent nanoparticles used as contrast agents for in vitro fluorescence microscopy.  相似文献   

3.
Novel partially phosphonated polyethylenimine polymers are developed in order to control the modification of nanoparticle (NP) surfaces. This polymer is built by an accessible one‐step process. The numerous phosphonate functions assume both a strong covalent anchoring on metal oxide NPs and a modulation of electric charges, while amino groups are associated with dispersion preservation and subsequent biofunctionalization. The zwitterionic nanomaterials obtained display a good stability toward pH and ionic strength. According to the selected percentage of phosphonation and the polymer size, zeta potential, and diameter of the particles are controlled.  相似文献   

4.
Organometal halide perovskites (hybrid perovskites) contain an anionic metal–halogen‐semiconducting framework and charge‐compensating organic cations. As hybrid materials, they combine useful properties of both organic and inorganic materials, such as plastic mechanical properties and good electronic mobility related to organic and inorganic material, respectively. They are prepared from abundant and low cost starting compounds. The perovskite stoichiometry is associated with the dimensionality of its inorganic framework, which can vary from three to zero, 3D consisting of corner‐sharing MX6 octahedra, and 0D consisting of isolated octahedra. Small‐sized organic cations can fit into the MX6 octahedra of the 3D framework and in all dimensions organic cations surround the inorganic framework. Regarding the low dimensionality in the material, this refers to at least one of its dimensions being shorter than approximately 100 nanometers. These materials should be considered as genuine nanomaterials or as bulk materials depending on whether they have three or less than three dimensions on the nanoscale, respectively. In principle, hybrid perovskite nanoparticles can be prepared with different shapes and with inorganic framework dimensionalities varying from 0D to 3D, and this also applies to the bulk material. This report is mainly focused on the unique properties of organometal halide perovskite nanoparticles.  相似文献   

5.
6.
Metallic crystalline/amorphous core–shell nanoparticles consisting of a crystalline Pd core (c‐Pd) surrounded by an amorphous Fe25Sc75 shell (a‐FeSc) are prepared by inert‐gas condensation. A phase transformation of the c‐Pd by a solid‐state diffusion process resulting in an amorphous core (a‐PdSc) surrounded by an amorphous FeSc shell is observed if the core–shell structure is irradiated at ambient temperature with 300 keV electrons. The amorphization process seems to involve the diffusion of irradiation‐induced defects and is presumably driven by the large negative heat of mixing of Pd and Sc, as well as by the excess enthalpy of the interfaces between the c‐Pd regions and the surrounding a‐FeSc. The structural transformation reported here opens a new way to producing metallic amorphous core–shell nanoparticles of different chemical compositions and probably novel properties.  相似文献   

7.
8.
9.
Mechanical alloying of Ti–Al–graphite elemental powder mixture was performed to synthesize nanocomposite powder with Ti(Al) solid solution matrix reinforced by in-situ formed TiC particles. The evolutions in phases, microstructures, and compositions of milled powders with the applied milling times were investigated. It showed that with increasing the milling time, the starting irregularly shaped powder underwent a successive change in its morphology from a flattened shape (10 h) to a highly coarsened spherical one (15 h) and, eventually, to a fine, equiaxed and uniform one (above 25 h). The prepared TiC/Ti(Al) composite powder was nanocrystalline, with the estimated average crystallite size of 12 nm and of 7 nm for Ti(Al) and TiC, respectively. Formation mechanisms behind the microstructural development of powders were elucidated. The Ti(Al) solid solution is formed through a gradual and progressive solution of Al into Ti lattice. The formation of TiC is through an abrupt, exothermic, and self-sustaining reaction between Ti and C elements. Selective Laser Melting (SLM) of as-prepared TiC/Ti(Al) composite powder was performed. The TiC particle reinforced TiAl3 (a major phase) and Ti3AlC2 (a minor phase) matrix composite part was obtained after SLM. Although a slight grain growth occurred as relative to as-milled powder, the SLM processed composites still exhibited a refined microstructure.  相似文献   

10.
High‐speed solution shearing, in which a drop of dissolved material is spread by a coating knife onto the substrate, has emerged as a versatile, yet simple coating technique to prepare high‐mobility organic thin film transistors. Solution shearing and subsequent drying and crystallization of a thin film of conjugated molecules is probed in situ using microbeam grazing incidence wide‐angle X‐ray scattering (μGIWAXS). We demonstrate the advantages of this approach to study solution based crystal nucleation and growth, and identify casting parameter combinations to cast highly ordered and laterally aligned molecular thin films.

  相似文献   


11.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The particle size distributions (PSDs) of metal oxide powders are often determined by analyzing suspensions of powders using laser diffraction (e.g. Malvern MasterSizer 2000). Particle agglomeration can effectively bias the resulting distribution towards “unrealistic” particle sizes. Solutions to avoid this problem must be found if a particle distribution based on the elemental or primary particle sizes is desired. In this work, the particle size distribution of doped‐CeO2 powders was studied. These powders show a crystalline single phase structure of controlled stoichiometry as determined by X‐ray diffraction and ICP analysis. The apparent size distribution was found to be a strong function of suspension stability. Dispersant agents (PBTCA and phosphonoacetic acid) and suspension pH affected stability as characterized by zeta potential measurements. Sonication of the suspensions further enhanced particle de‐agglomeration. Finally, only the combined effect of a dispersant agent, pH adjustment of the suspension and sonication provided a primary particle size distribution. The results presented in this work can be used in the analysis of similar ceramic powders in which strong particle agglomeration is present.  相似文献   

14.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号