首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

2.
Grignard Metathesis polymerization (GRIM) for the synthesis of regioregular poly(3‐alkylthiophenes) proceeds via a “living” chain growth mechanism. Due to the “living” nature of this polymerization regioregular poly(3‐alkylthiophenes) with predetermined molecular weight, narrow molecular weight distributions and desired chain end functionality are now readily available. Allyl terminated poly(3‐hexylthiophene) was successfully used as a precursor for the synthesis of di‐block copolymers containing polystyrene. The addition of “living” poly(styryl)lithium to the allyl terminated regioregular poly(3‐hexylthiophene) generated the di‐block copolymer. Poly(3‐hexylthiophene)‐b‐polystyrene was also synthesized by atom transfer radical polymerization. Integration of poly(3‐hexylthiophene) in di‐block copolymers with polystyrene leads to the formation of nanowire morphology and self‐ordered conducting nanostructured materials.  相似文献   

3.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

5.
Polystyrene‐block‐poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) ABC triblock copolymers were synthesized by sequential living anionic polymerization. Their solution properties were investigated in toluene, which is a bad solvent for the middle block. Spherical micelles are formed, which consist of a poly(2‐vinyl pyridine) dense core bearing polystyrene and poly(methyl methacrylate) soluble chains at the corona. These micelles exhibit the architecture of heteroarm star copolymers obtained by “living” polymerization methods. The aggregation numbers strongly depend on the length of the insoluble P2VP middle block, thus remarkably affecting the size of the micelles.  相似文献   

6.
Summary: Novel, star‐shaped, amphiphilic block copolymers composed of fully degradable poly(caprolactone) were synthesized by sequential addition polymerization. In the first step, four‐arm macroinitiators were produced by ring‐opening polymerization of caprolactone by initiation with pentaerythritol. Then, block copolymers were synthesized by sequential addition of 4‐(2‐benzyloxyethyl)‐ε‐caprolactone to the four‐arm macroinitiators. Star‐shaped, amphiphilic block copolymers containing poly(caprolactone)‐block‐poly[4‐(2‐hydroxyethyl)caprolactone] segments were obtained by catalytic debenzylation.

Four‐arm amphiphilic polycaprolactone star block copolymer.  相似文献   


7.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

8.
The controlled free‐radical polymerization of styrene and chloromethylstyrene monomers in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxyl (TEMPO) has been studied with the aim of synthesizing block copolymers with well‐defined structures. First, TEMPO‐capped poly(chloromethylstyrene) was prepared. Among several initiating systems [self‐initiation, dicumyl peroxide, and 2,2′‐azobis(isobutyronitrile)], the last offered the best compromise for obtaining a good control of the polymerization and a fast polymerization rate. The rate of the TEMPO‐mediated polymerization of chloromethylstyrene was independent of the initial concentration of TEMPO but unexpectedly higher than the rate of the thermal self‐initiated polymerization of chloromethylstyrene. Transfer reactions to the chloromethyl groups were thought to play an important role in the polymerization kinetics and the polydispersity index of the resulting poly(chloromethylstyrene). Second, this first block was used as a macroinitiator in the polymerization of styrene to obtain the desired poly(chloromethylstyrene‐b‐styrene) block copolymer. The kinetic modeling of the block copolymerization was in good agreement with experimental data. The block copolymers obtained in this work exhibited a low polydispersity index (weight‐average molecular weight/number‐average molecular weight < 1.5) and could be chemically modified with nucleophilic substitution reactions on the benzylic site, opening the way to a great variety of architectures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3845–3854, 2000  相似文献   

9.
Well‐defined poly(vinyl acetate) macroinitiators, with the chains thus end‐capped by a cobalt complex, were synthesized by cobalt‐mediated radical polymerization and used to initiate styrene polymerization at 30 °C. Although the polymerization of the second block was not controlled, poly(vinyl acetate)‐b‐polystyrene copolymers were successfully prepared and converted into amphiphilic poly(vinyl alcohol)‐b‐polystyrene copolymers by the methanolysis of the ester functions of the poly(vinyl acetate) block. These poly(vinyl alcohol)‐b‐polystyrene copolymers self‐associated in water with the formation of nanocups, at least when the poly(vinyl alcohol) content was low enough. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 81–89, 2007  相似文献   

10.
Poly(furfuryl isocyanate) (PFIC), which includes the reactive furan group, was synthesized by anionic polymerization using a sodium benzhydroxide (Na‐BH), self‐assembly initiator. We determined the optimum polymerization conditions by varying both the reaction time and the molar ratio of the monomer to the initiator. Block copolymer, poly(furfuryl isocyanate)‐b‐poly(n‐hexyl isocyanate), was synthesized under optimized polymerization conditions. The PFIC was modified by Diels–Alder reactions with C60 for functionalization. Transmission electron microscopy (TEM) was used to study the self‐assembly of block copolymers and modified block copolymer with C60. C60 formed highly ordered aggregates on the PFIC domains via self‐assembly of the block copolymer.  相似文献   

11.
We report on the synthesis of poly[(sodium sulfamate/carboxylate) isoprene‐b‐2‐vinyl pyridine] block polyampholytes (SCPI‐P2VP), utilizing anionic polymerization and post polymerization functionalization reactions. The precursor poly(isoprene‐b‐(2‐vinylpyridine)) diblock copolymers (PI‐P2VP), containing a polyisoprene (PI) block with high 1,4 microstructure, were prepared by anionic polymerization high vacuum techniques, in two steps, involving change of the polymerization solvent. Subsequent functionalization of the PI block with chlorosulfonyl isocyanate, introduced sulfamate and carboxylate groups in the polymer chains and produced the desired block polyampholytes. The successful synthesis of the polyampolytes was corroborated by elemental analysis and IR spectroscopy measurements. The self‐assembly behaviour of the aforementioned polyampholytes was studied in aqueous solutions as a function of pH, by aid of dynamic and static light scattering, zeta potential, fluorescence spectroscopy and atomic force microscopy. Experimental results indicate that the block polyampholytes form micellar structures with P2VP cores and SCPI coronas at pH > 6, whereas more compact nanoparticles are formed at pH < 4 from the complexation of positively charged P2VP and SCPI, stabilized by excess negative charges of uncomplexed SCI segments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Poly(sodium(2‐sulfamate‐3‐carboxylate)isoprene)‐b‐poly(ethylene oxide) and poly(ethylene oxide)‐b‐poly(sodium(2‐sulfamate‐1‐carboxylate)isoprene)‐b‐poly(ethylene oxide) double hydrophilic block copolymers were prepared by selective post polymerization reaction of the polyisoprene block, of poly(isoprene‐b‐ethylene oxide) diblocks or poly(ethylene oxide‐b‐isoprene‐b‐ethylene oxide) triblock precursors, with N‐chlorosulfonyl isocyanate. The precursors were synthesized by anionic polymerization high vacuum techniques and had narrow molecular weight distributions and predictable molecular weights and compositions. The resulting double hydrophilic block copolymers were characterized by FTIR and potentiometric titrations in terms of the incorporated functional groups. Their properties in aqueous solutions were studied by viscometry and dynamic light scattering. The latter techniques revealed a complex dilute solution behavior of the novel block copolymers, resulting from the polyelectrolyte character of the functionalized PI block and showing a dependence on solution ionic strength and pH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 606–613, 2006  相似文献   

13.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

14.
Atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) were combined to synthesize poly(?‐caprolactone‐co‐octadecyl methacrylate‐co‐dimethylaminoethyl methacrylate) copolymers possessing a triblock or random block structure. Various synthetic pathways (sequential or simultaneous approaches) were investigated for the synthesis of both copolymers. For the preparation of these copolymers, an initiator with dual functionality for ATRP/anionic ring‐opening polymerization, 2‐hydroxyethyl 2‐bromoisobutyrate, was used. Copolymers were prepared with good structural control and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.2), but one limitation was identified: the dimethylaminoethyl methacrylate (DMAEMA) block had to be synthesized after the ?‐caprolactone block. ROP could not proceed in the presence of DMAEMA because the complexation of the amine groups in poly(dimethylaminoethyl methacrylate) deactivated tin(II) hexanoate, which was used as a catalyst for ROP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1498–1510, 2005  相似文献   

15.
The anionic polymerization behaviors of ethynylstyrene derivatives containing isomeric pyridine moieties, 2‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( A ), 3‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( B ), and 4‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( C ), were investigated in the identical conditions. The anionic polymerization of A – C was performed with (diphenylmethyl)potassium (Ph2CHK) in tetrahydrofuran (THF) at ?78 °C. The polymerization of A proceeded quantitatively at –78 °C for 4 h, and the resulting poly( A ) possessed predictable molecular weights (Mn = 3300–68,500) and narrow molecular weight distributions (MWDs) (Mw/Mn = 1.04–1.11). In contrast, the anionic polymerization of B was not performed at –78 °C for 4 h due to the occurrence of side reactions. The monomer B was quantitatively recovered after the reaction. In the polymerization of C performed at –78 °C for 6 h, observed Mn values of the resulting poly( C ) were in good agreement with calculated molecular weights based on monomer to initiator ratios, but the MWDs were somewhat broad (Mw/Mn = 1.23–1.31). To estimate the reactivity of A and to characterize its living nature, the block copolymerization of A with 2‐vinylpyridine (2VP) and methyl methacrylate (MMA) was performed. The well‐defined block copolymers, poly(2VP)‐b‐poly( A ) and poly( A )‐b‐poly(MMA), were successfully synthesized without any additives. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

17.
The in situ synthesis of the nano‐assemblies of the high molecular weight ferrocene‐containing block copolymer of poly(ethylene glycol)‐block‐poly(4‐vinylbenzyl ferrocenecarboxylate) (PEG‐b‐PVFC) via dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization was discussed. Taking the advantage of the accelerated polymerization rate of the dispersion RAFT polymerization, the nano‐objects of the well‐defined PEG‐b‐PVFC diblock copolymer with the polymerization degree (DP) of the ferrocene‐containing PVFC block up to 300 were prepared. It was found that the morphology of the PEG‐b‐PVFC diblock copolymer nano‐assemblies was dependent on the DP of the PEG and PVFC blocks, and nanospheres favorably formed in the case of the long PEG block and vesicles containing a thick and porous membrane were formed in the case of the short PEG block and long PVFC block, respectively. Our results demonstrate that the dispersion RAFT polymerization is an effective way to prepare the high molecular weight ferrocene‐containing block copolymer with interesting morphologies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 900–909  相似文献   

18.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Block copolymers consisting exclusively of a silicon–oxygen backbone are synthesized by sequential anionic ring‐opening polymerization of different cyclic siloxane monomers. After formation of a poly(dimethylsiloxane) (PDMS) block by butyllithium‐initiated polymerization of D3, a functional second block is generated by subsequent addition of tetramethyl tetravinyl cyclotetrasiloxane (D4V), resulting in diblock copolymers comprised a simple PDMS block and a functional poly(methylvinylsiloxane) (PMVS) block. Polymers of varying block length ratios were obtained and characterized. The vinyl groups of the second block can be easily modified with a variety of side chains using hydrosilylation chemistry to attach compounds with Si—H bond. Conversion of the hydrosilylation used for polymer modification was investigated.  相似文献   

20.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号