首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid chromatographic method using a solid-phase extraction procedure for the quantification of sotalol in plasma and urine is described. Sotalol is eluted from an extraction column with ethyl acetate-acetonitrile (1:2) and, after separation by reversed-phase high-performance liquid chromatography on a mu Bondapak C18 column, is quantified by fluorescence detection at excitation and emission wavelengths of 240 and 310 nm, respectively. The method has been demonstrated to be linear over the concentration ranges 10-6000 ng/ml in plasma and 0.5-100 micrograms/ml in urine. Mean inter-assay accuracy of the method for plasma ranged from 93 to 100% and for urine from 102 to 114%; precision ranged from 0.5 to 1.6% for plasma over a concentration range of 200-4000 ng/ml and for urine from 0.7 to 2.0% at concentrations of 2-50 micrograms/ml. Mass spectrometry confirmed the presence of sotalol in isolated chromatographic fractions of plasma and urine extracts from subjects given sotalol orally.  相似文献   

2.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

3.
Buformin is a widely used as an antidiabetic agent but its renal excretion is still controversial. A new HPLC method with ultraviolet (UV) detection for the determination of buformin in plasma and urine has been developed. After protein precipitation or dilution, buformin and internal standard phenformin were resolved on an octadecyl silica column and detected by UV detection at 233 nm. Intra- and inter-day coefficients of variation were <9%. The limit of quantification was around 0.05 micro g/ml for plasma and 2.5 micro g/ml for urine.  相似文献   

4.
A novel pre-column derivatization reversed-phase high-performance liquid chromatography with fluorescence detection is described for the determination of bupropion in pharmaceutical preparation, human plasma and human urine using mexiletine as internal standard. The proposed method is based on the reaction of 4-chloro-7-nitrobenzofurazan (NBD-Cl) with bupropion to produce a fluorescent derivative. The derivative formed is monitored on a C18 (150 mm × 4.6 mm i.d., 5 μm) column using a mobile phase consisting of methanol-water 75:25 (v/v), at a flow-rate of 1.2 mL/min and detected fluorimetrically at λ(ex) = 458 and λ(em) = 533 nm. The assay was linear over the concentration ranges of 5-500 and 10-500 ng/mL for plasma and urine, respectively. The limits of detection and quantification were calculated to be 0.24 and 0.72 ng/mL for plasma and urine, respectively (inter-day results). The recoveries obtained for plasma and urine were 97.12% ± 0.45 and 96.00% ± 0.45, respectively. The method presents good performance in terms of precision, accuracy, specificity, linearity, detection and quantification limits and robustness. The proposed method is applied to determine bupropion in commercially available tablets. The results were compared with an ultraviolet spectrophotometry method using t- and F-tests.  相似文献   

5.
A method is described for the determination of cortisol in human plasma and urine by high-performance liquid chromatography using fluorophotometric detection. After extraction with methylene chloride, cortisol is labelled with dansyl hydrazine, and then separated by high-performance chromatography. The eluate is monitored by a fluorophotometer at 350 nm (excitation) and 505 nm (emission). The optimum conditions for the determination, such as HCl and dansyl hydrazine concentrations, reaction time and reaction temperature, and for the eluent of high-performance liquid chromatography, are discussed. Linearity of the fluorescence intensity (peak height) with the amount of cortisol was obtained between 0.5 and 60 ng. The recoveries for 50 and 100 ng of added cortisol were 98.7 and 95.4% for plasma, and 96.4 and 90.6% for urine, respectively. Comparison with a radioimmunoassay gave a correlation coefficient of 0.978. The proposed method is suitable for the routine analysis of cortisol in plasma and urine.  相似文献   

6.
A simple, rapid and sensitive method for the determination of iothalamic acid (IA) in both plasma and urine is reported. After extraction with ethyl acetate, IA was determined by strong anion-exchange high-performance liquid chromatography with ultraviolet detection at 254 nm. The lower limit of detection was 0.5 micrograms/ml. The average recovery was 73 and 57% from plasma and urine, respectively. Linearity was found over the investigated concentration range (up to 500 micrograms/ml for plasma and up to 10.0 mg/ml for urine). The reproducibility of the technique was good (coefficient of variation less than 6%) as was the precision and accuracy (coefficient of variation less than 2.5%). No interference from endogenous substances or any of the common drugs tested was found.  相似文献   

7.
An isocratic reversed-phase ion-pair liquid chromatographic method for the determination of tianeptine and its two main metabolites in plasma, urine and tissues, using an internal standard, is reported. The influence of two stationary phases on the retention of the drugs was studied. The drugs were extracted as ion pairs, using a heptane-octanol-tetraheptylammonium bromide mixture (98:2:0.5, v/v/w) as extraction solvent. This extraction procedure yielded plasma drug recoveries of greater than 60% and allowed UV detection at 220 nm without interference from endogenous components of plasma, urine or tissues. Linear standard curves up to 1.00 micrograms/ml and drug determination down to 0.01 microgram/ml were observed. This method has been successfully applied to the analysis of human plasma and urine samples and of encephales from tianeptine-dosed rats.  相似文献   

8.
《Analytical letters》2012,45(17-18):1433-1447
Abstract

A simple, specific, rapid and sensitive method for the analysis of mecillinam in plasma and urine using high pressure liquid chromatography is described. The assay is performed by direct injection of a plasma protein free supernatant or a dilution of urine. A μBondapak phenyl column with an eluting solvent of 16% CH3CN-0.2% H3PO4 was used, with UV detection of the effluent at 220 nm. Desacetyl-cephalothin was used as the internal standard and quantitation was based on peak height ratio of mecillinam to that of the internal standard. The lowest concentration detectable without extraction was 0.25 μg/ml for plasma and 8.9 μg/ml for urine. No interference from plasma and urine was noted.  相似文献   

9.
An improved method for the simultaneous determination of cocaine, norcocaine, benzoylecgonine and benzoylnorecgonine using reversed-phase high-performance liquid chromatography with ultraviolet detection is described. Following solid-phase extraction, chromatography was performed using a column containing an octadecylsilica-coated packing, eluted with 6% acetonitrile in phosphate buffer, pH 2.1, and detected at 233 nm. Using 80-microliters samples, the detection limit is 18 ng/ml for benzoylecgonine and benzoylenorecgonine and 35 ng/ml for cocaine and norcocaine. The coefficients of variation range from 3.5% (benzoylecgonine) to 7.0% (norcocaine). The procedure has been applied to samples of guinea pig plasma, urine and amniotic fluid and human urine.  相似文献   

10.
A simple and rapid high-performance liquid chromatographic method for the determination of R[(5,6-Dichloro-2,3,9,9a-tetrahydro-3-oxo-9a-propyl-1-H-fluoren-7-yl)oxy]acetic acid (I) in human plasma and urine is described. The method utilizes Bond-Elut® cartridge facilitate the drug extraction. Analysis is performed on a short reversed-phase column with a mobile phase consisting of acetonitrile and phosphate buffer and quantification is carried out by ultraviolet detection with a wave-length set at 340 nm. The method is linear and reproducible for both plasma and urine analyses (0.25–50) μg/mL) with the detection limit of 125 ng/mL of plasma and urine. Plasma and urine concentrations of / at selected time intervals following I.V. administration of single rising doses are presented.  相似文献   

11.
The chromatographic behaviour of cadralazine and its potential metabolites and degradation products with respect to pH, buffer molarity and composition of eluent is described. A selective method with an adequate sensitivity for the determination of the drug in human plasma and urine is also reported. The method includes extraction of biological fluids with chloroform and the analysis of extracts on a reversed-phase column with isocratic elution and detection at 254 nm. The method has been applied to the analysis of plasma and urine of a patient administered a single oral dose of 30 mg of cadralazine.  相似文献   

12.
《Analytical letters》2012,45(12):2515-2531
ABSTRACT

Propofol is coupled with 2, 6-dichloroquinone-4-chlorimide (DCQ) in a reaction buffered at pH 9.6 to give a colored product having an analytically useful maximum at 635 nm. The factors affecting the color generation were optimized and incorporated in the procedure. The reacted propofol has a molar absorptivity of 3.9 × 10?4 L mol?1 cm?1, and Beer's law is obeyed for concentrations 1-5 μg ml?1 with detection limit 0.25 μg ml?1. The method was found applicable to biological fluids (plasma and urine) spiked with propofol at concentration levels 1-5 μg ml?1 for plasma and 1-5 μg 0.5 ml?1 urine (less sensitivity is obtained with urine volumes above 0.5 ml) with detection limits 0.28 μg ml?1 for plasma and 0.4 μg 0.5 ml?1 urine. The average recovery for the commercial preparation (1% w/v propofol emulsion intravenous injection for infusion) was 99.54% with an RSD of 1.05%. The method was validated by an adopted HPLC method. The results obtained by the HPLC method for the commercial preparation were statistically compared with the proposed method and evaluated at the 95% confidence limits.  相似文献   

13.
An optimized HPLC method for the quantification of metoclopramide (MCP) in human plasma and urine is described. MCP and internal standard are extracted from alkalinized substrate into diethyl ether and back-extracted into dilute acid. The analytes are separated with a ternary mobile phase at cyanopropyl-silica and detected at 312 nm (UV detection). The lower limit of quantification is 0.5 ng/ml in plasma and 50 ng/ml in urine. Optimization of extraction, chromatography, and detection is discussed. The method is selective to numerous common drug substances with excellent accuracy and precision data. After validation, the method is applied to the samples of a pharmacokinetic study. Pharmacokinetic parameters indicate the need for a sophisticated method as tool for optimization of metoclopramide formulations.  相似文献   

14.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of the new antipsychotic risperidone and its major metabolite 9-hydroxyrisperidone in plasma, urine and animal tissues. The alkalinized plasma samples were extracted with ethyl acetate and further purified prior to reversed-phase chromatography with ultraviolet detection at 280 nm. The method could also be applied to urine samples and animal tissue homogenates. Quantification limits were 2 ng/ml for plasma and urine and 10 ng/g for animal tissue. The method was applied to pharmacokinetic studies in experimental animals, human volunteers and patients.  相似文献   

15.
Inulin and p-aminohippuric acid (PAH) clearances are used for the estimation of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). A simple and rapid high-performance liquid chromatography (HPLC) method with UV detection is described for the simultaneous determination of inulin and PAH in the same chromatogram in the plasma and urine of humans. Plasma and urine samples were hydrolyzed with perchloric acid (0.7%) in boiling water. The mobile phase consisted of 0.01 M potassium dihydrogenphosphate with 0.02 M tetramethylammonium chloride and o-phosphoric acid (pH 3)-acetonitrile (94:6, v/v), pumped at a rate of 1.2 ml min-1 on a C8 reversed-phase column. Tannic acid was used as the internal standard and UV detection at 285 nm was employed. The calibration curves were linear over the concentration range of 12.5-100 mg l-1 for inulin and 6.25-50 mg l-1 for PAH with determination coefficients greater than 0.997. The method is accurate (bias < 13%) and reproducible (intra- and inter-day relative standard deviation less than 11%), with a limit of quantitation of 12.5 mg l-1 and 6.25 mg l-1 for inulin and PAH, respectively. Analytical recoveries from urine and plasma were ranged from 81 to 108% for both compounds. This fully validated method, which allows the simultaneous determination of inulin and PAH clearances, is simple, rapid (total run time < 10 min) and requires only a 200 microliters plasma or urine sample.  相似文献   

16.
A sensitive method is described for the measurement of remoxipride in human plasma and urine. Remoxipride and its internal standard are extracted from plasma or urine at pH 12 with a mixture of hexane and methyl tert.-butyl ether. After washing the organic phase with base, the compounds are extracted into acid and analyzed on a C18 column with ultraviolet detection at 214 nm. The mobile phase is composed of acetonitrile and aqueous buffer (sodium perchlorate and phosphoric acid, pH 1.7). The limits of reliable quantitation for remoxipride are 12.5 and 50 ng/ml for plasma and urine, respectively. The run times are 6 min for plasma and 3 min for urine. The method has been successfully used to assay remoxipride clinical study samples. This mobile phase has also been successfully applied to the analysis of other basic drugs such as cimetidine, codeine, diltiazem and quinidine with minor modifications.  相似文献   

17.
A sensitive and selective method for the determination of the pyridinium metabolite (HPP+) derived from the antipsychotic drug haloperidol (HP) in brain tissue, plasma and urine using high-performance liquid chromatography with fluorescence detection is described. The HPP+ present in biological samples was extracted using a Sep-Pak C18 cartridge. Recoveries of HPP+ ranged from 78 to 90%. Final separation and quantitative estimations of HPP+ were achieved on a C18 reversed-phase column employing a mobile phase of acetonitrile-30 mM ammonium acetate (40:60, v/v) containing 10 mM triethylamine and adjusted to pH 3 with trifluoroacetic acid. The fluorescence detection utilized an excitation wavelength of 304 nm and an emission wavelength of 374 nm. Standard curves were linear in the range of 2.5-100 ng/ml for brain tissue homogenate and plasma samples and 10-500 ng/ml for urine samples. The detection limit of HPP+ was about 1 ng/ml in all biological samples. The concentrations of HPP+ in brain tissue, plasma and urine from HP-treated rats were determined using this method.  相似文献   

18.
A simple liquid chromatography (LC) method has been developed and validated to determine rhaponticin in rat plasma, faeces and urine. Chromatographic separation was achieved through mobile phase consisting of acetonitrile and water at a flow rate of 1.0 mL min?1. Rhaponticin was quantified using UV detection at 324 nm. The assay was linear over the concentration range of 50–4,000 ng mL?1 for plasma, faeces and urine. The intra- and inter-day RSD were less than 10%. The plasma, faeces and urine rhaponticin levels were monitored in rats after oral administration. This simple LC method appears to be useful in the pharmacokinetic investigation of rhaponticin.  相似文献   

19.
Abstract

A sensitive HPLC method with minimal sample preparation and good reproducibility for the determination of furosemide in plasma and urine is described. Acidified plasma samples were extracted using CH2Cl2 containing desmethylnaproxen as internal standard (IS). Fresh urine samples were incubated with β-gluc-uronidase for 15 minutes and then treated with CH3CN containing IS.

Chromatography was performed on a C18 column with 10 mcl sample injection, Mobile phases were: a) for plasma: 0.01 M NaH2PO4, pH 3.5 - CH3OH (65:35), and b) for urine: acetic acid, pH 3.5 - CHS3OH (60:40) at 3 ml/min and fluorescence detection at Ex 235/Em 389 nm. The plasma standard curve was linear from 0.01 to 15.0 mcg/ml and the urine from 0.5 to 200.0 mcg/ml. The within run CV's were 3,2% at 0.74 mcg/ml plasma and 2.0% at 10.7 mcg/ml urine. Recovery from plasma was 69.9% at 2.0 mcg/ml and 98.6% from urine at 5.0 mcg/ml. The stability of furosemide and its glucuronide were studied. Both methods have been applied to the analysis of plasma and urine samples obtained from human volunteers.  相似文献   

20.
A relatively simple, sensitive and rapid high-performance liquid chromatographic method is described for measuring the anticancer drug 5-fluorouracil (5-FU) in human plasma and urine. The procedure includes liquid-liquid extraction using ethyl acetate-methanol (95:5) and preparative column chromatography to separate 5-FU from constituents normally occurring in these biological samples. The columns contained a specially modified form of diatomaceous earth, which requires no pre-conditioning washes. Reversed-phase high-performance liquid chromatography was performed on a C18 column (70 mm x 4.6 mm I.D.) with a mobile phase of water-methanol (95:5) and ultraviolet detection (268 nm). The overall recovery from plasma and urine was 91 and 94%, respectively, at the concentration of 50 ng/ml. The determination limit of the assay for 5-FU was 10 ng/ml of plasma and urine. Concentrations of 5-FU between 10 and 500 ng/ml were measured in plasma and urine with a relative standard deviation of 6.8%. In order to evaluate the procedure, plasma and urine samples from three patients treated with 5-FU by continuous intravenous perfusion, were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号