首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound contrast agents (UCAs) are used clinically to aid detection and diagnosis of abnormal blood flow or perfusion. Characterization of UCAs can aid in the optimization of ultrasound parameters for enhanced image contrast. In this study echogenic liposomes (ELIPs) were characterized acoustically by measuring the frequency-dependent attenuation and backscatter coefficients at frequencies between 3 and 30 MHz using a broadband pulse-echo technique. The experimental methods were initially validated by comparing the attenuation and backscatter coefficients measured from 50-μm and 100-μm polystyrene microspheres with theoretical values. The size distribution of the ELIPs was measured and found to be polydisperse, ranging in size from 40 nm to 6 μm in diameter, with the highest number observed at 65 nm. The ELIP attenuation coefficients ranged from 3.7 ± 1.0 to 8.0 ± 3.3 dB/cm between 3 and 25 MHz. The backscatter coefficients were 0.011 ± 0.006 (cm str)(-1) between 6 and 9 MHz and 0.023?±?0.006 (cm str)(-1) between 13 and 30 MHz. The measured scattering-to-attenuation ratio ranged from 8% to 22% between 6 and 25 MHz. Thus ELIPs can provide enhanced contrast over a broad range of frequencies and the scattering properties are suitable for various ultrasound imaging applications including diagnostic and intravascular ultrasound.  相似文献   

2.
Attenuation of ultrasound in post rigor bovine skeletal muscle   总被引:4,自引:0,他引:4  
A pulse transmission method for measuring the attenuation of 1-7 MHz ultrasound in bovine skeletal muscle is described. Measurements of the attenuation coefficient at -20, 0, 20 and 40 degrees C conformed to the relation alpha = Afn, where A and n are temperature-dependent coefficients and f is the frequency. alpha/f varied slowly with frequency, and at 4 MHz and 20 degrees C mean values were 1.3 dB cm-1 MHz-1 along the fibres and 0.55 dB cm-1 MHz-1 across the fibres. These data are lower than most previous measurements of skeletal muscle, but comparable with recent measurements of canine heart muscle.  相似文献   

3.
Omari E  Lee H  Varghese T 《Ultrasonics》2011,51(6):758-767
Quantitative ultrasound features such as the attenuation slope, sound speed and scatterer size, have been utilized to evaluate pathological variations in soft tissues such as the liver and breast. However, the impact of variations in the sound speed and backscatter due to underlying fat content or fibrotic changes, on the attenuation slope has not been addressed. Both numerical and acoustically uniform tissue-mimicking experimental phantoms are used to demonstrate the impact of sound speed variations on attenuation slope using clinical real-time ultrasound scanners equipped with linear array transducers. Radiofrequency data at center frequencies of 4 and 5 MHz are acquired for the experimental and numerical phantoms respectively. Numerical phantom sound speeds between 1480 and 1600 m/s in increments of 20 m/s for attenuation coefficients of 0.3, 0.4, 0.5, 0.6, and 0.7 dB/cm/MHz are simulated. Variations in the attenuation slope when the backscatter intensity of the sample is equal, 3 dB higher, and 3 dB lower than the reference is also evaluated. The sound speed for the experimental tissue-mimicking phantoms were 1500, 1540, 1560 and 1580 m/s respectively, with an attenuation coefficient of 0.5 dB/cm/MHz. Radiofrequency data is processed using three different attenuation estimation algorithms, i.e. the reference phantom, centroid downshift, and a hybrid method. In both numerical and experimental phantoms our results indicate a bias in attenuation slope estimates when the reference phantom sound speed is higher (overestimation) or lower (underestimation) than that of the sample. This bias is introduced via a small spectral shift in the normalized power spectra of the reference and sample with different sound speeds. The hybrid method provides the best estimation performance, especially for sample attenuation coefficient values lower than that of the reference phantom. The performance of all the methods deteriorates when the attenuation coefficient of the reference phantom is lower than that of the sample. In addition, the hybrid method is the least sensitive to sample backscatter intensity variations.  相似文献   

4.
An experimental model which can simulate physical changes that occur during aging was developed in order to evaluate the effects of change of mineral content and microstructure on ultrasonic properties of bovine cancellous bone. Timed immersion in hydrochloric acid was used to selectively alter the mineral content. Scanning electron microscopy and histological staining of the acid-treated trabeculae demonstrated a heterogeneous structure consisting of a mineralized core and a demineralized layer. The presence of organic matrix contributed very little to normalized broadband ultrasound attenuation (nBUA) and speed of sound. All three ultrasonic parameters, speed of sound, nBUA and backscatter coefficient, were sensitive to changes in apparent density of bovine cancellous bone. A two-component model utilizing a combination of two autocorrelation functions (a densely populated model and a spherical distribution) was used to approximate the backscatter coefficient. The predicted attenuation due to scattering constituted a significant part of the measured total attenuation (due to both scattering and absorption mechanisms) for bovine cancellous bone. Linear regression, performed between trabecular thickness values and estimated from the model correlation lengths, showed significant linear correlation, with R(2)=0.81 before and R(2)=0.80 after demineralization. The accuracy of estimation was found to increase with trabecular thickness.  相似文献   

5.
Attenuation estimation and imaging in the cervix has been utilized to evaluate the onset of cervical ripening during pregnancy. This feature has also been utilized for the acoustic characterization of leiomyomas and myometrial tissue. In this paper, we present direct narrowband substitution measurement values of the variation in the ultrasonic attenuation coefficient in ex vivo human uterine and cervical tissue, in the 5-10 MHz frequency range. At 5 MHz, the attenuation coefficient values are similar for the different orientations of uterine tissue with values of 4.1-4.2 dB/cm, 5.1 dB/cm for the leiomyoma, and 6.3 dB/cm for the cervix. As the frequency increases, the attenuation coefficient values increase and are also spread out, with a value of approximately 12.6 dB/cm for the uterus (both parallel and perpendicular), 16.0 for the leiomyoma, and 26.8 dB/cm for the cervix at 10 MHz. The attenuation coefficient measured increases monotonically over the frequency range measured following a power law.  相似文献   

6.
The variations of phase velocity and normalized broadband ultrasonic attenuation (nBUA) with porosity were investigated in Polyacetal cuboid bone-mimicking phantoms with circular cylindrical pores running normal to the surface along the three orthogonal axes. The frequency-dependent phase velocity and attenuation coefficient in the phantoms with porosities from 0% to 65.9% were measured from 0.65 to 1.10 MHz. The results showed that the phase velocity at 880 kHz decreased linearly with porosity, whereas the nBUA increased linearly with porosity. This study provides a useful insight into the relationships between ultrasonic properties and porosity in bone at porosities lower than 70%.  相似文献   

7.
The variable distance pulsed phase-locked method is applied to study the temperature and frequency dependences of the rate and coefficient of ultrasound absorption in diethyl siloxane and ethyloctyl siloxane in the frequency range 4–63 MHz at temperatures from 293 to 348 K. Based on experimental data, the frequency dependence of the volume and shear viscosities is derived. The values of the shear and volume viscosity coefficients, as well as the relaxation times of processes discovered, are found.  相似文献   

8.
A model describing the frequency dependence of backscatter coefficient from trabecular bone is presented. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long thin cylinders with radii small compared with the ultrasonic wavelength. Experimental ultrasonic measurements at 500 kHz, 1 MHz, and 2.25 MHz from a wire target and from trabecular bone samples from human calcaneus in vitro are reported. In both cases, measurements are in good agreement with theory. For mediolateral insonification of calcaneus at low frequencies, including the typical diagnostic range (near 500 kHz), backscatter coefficient is proportional to frequency cubed. At higher frequencies, the frequency response flattens out. The data also suggest that at diagnostic frequencies, multiple scattering effects on the average are relatively small for the samples investigated. Finally, at diagnostic frequencies, the data suggest that absorption is likely to be a larger component of attenuation than scattering.  相似文献   

9.
M O Woods  C A Miles 《Ultrasonics》1986,24(5):260-266
The attenuation and speed of ultrasound were measured in homogenates of post-rigor bovine skeletal muscle, and found to increase in proportion to the concentration of muscle. Extrapolation of the data to tissue concentrations yielded an attenuation of 7.5 dB cm-1 at pH 5.7, 20 degrees C and 7.3 MHz. This was close to that measured in the minced tissue, 8.3 dB cm-1, and between values previously recorded across and along the fibres of intact muscle. Corresponding measurements for the speed of ultrasound in homogenates, extrapolated to the native tissue concentration, were: 1555 +/- 9 m s-1 at 0 degree C, 1592 +/- 10 m s-1 at 20 degrees C and 1616 +/- 9 m s-1 at 37 degrees C. These were not significantly different from measurements of minced muscle at the same temperatures. Measurements of the attenuation of 7.3 MHz ultrasound in suspensions of myofibrils indicated that attenuation by the myofibrils caused at least 64% of the attenuation in muscle homogenates at pH 5.7. Re-analysis of the viscous loss arising from relative movement of the myofibrils in their surrounding fluid, indicated that this mechanism could account for no more than 15% of the attenuation in muscle homogenates. Attenuation due to scattering was calculated to be at least two orders of magnitude smaller than that observed in either homogenates or suspensions of myofibrils. It was concluded that the contribution of scattering to the attenuation was small, and that the attenuation was caused by processes involving an absorption of energy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The frequency dependence of the ultrasound signal backscattered by blood in shear flow was studied using a simulation model. The ultrasound backscattered signal was computed with a linear model that considers the characteristics of the ultrasound system and tissue acoustic properties. The tissue scattering properties were related to the position and shape of the red blood cells (RBCs). A 2D microrheological model simulated the RBC dynamics in a Couette shear flow system. This iterative model, described earlier [Biophys. J. 82, 1696-1710 (2002)], integrates the hydrodynamic effect of the flow, as well as adhesive and repulsive forces between RBCs. RBC aggregation was simulated at 40% hematocrit and shear rates of 0.05-2 s(-1). The RBC aggregate sizes ranged, on average, from 3.3 RBCs at 2 s(-1) to 33.5 cells at 0.05 s(-1). The ultrasound backscattered power was studied at frequencies between 5-120 MHz and insonification angles between 0-180 degrees. At frequencies below approximately 30 MHz, the ultrasound backscattered power increased as the shear rate was decreased and the size of the aggregates was raised. A totally different scattering behavior was noted above 30 MHz. Typical spectral slopes of the backscattered power (log-log scale) between 5-25 MHz equaled 3.8, whereas slopes down to 0.6 were measured at 0.05 s(-1), between 40-60 MHz. The ultrasound backscattered power was shown to be angle dependent at low frequencies (5-25 MHz). The anisotropy persisted at high frequencies (>25 MHz) for small aggregates (at 2 s(-1)). In conclusion, this study sheds some light on the blood backscattering behavior with an emphasis on the non-Rayleigh regime. Additional experimental studies may be necessary to validate the simulation results, and to fully understand the relation between the ultrasound backscattered power, level of RBC aggregation, shear rate, frequency, and insonification angle.  相似文献   

11.
黄河粉砂沉积层低频声吸收衰减测量   总被引:1,自引:0,他引:1  
单汝政  周树义 《声学学报》1984,9(3):201-204
关于沉积物中声吸收衰减与频率关系Hamilton[1]在综合和分析了大量实验数据后认为:淤泥、粘土或泥从几赫到兆赫,砂从1千赫到兆赫、泥砂混合物从150赫到兆赫的频率范围内衰减系数随频率线性增加。  相似文献   

12.
The attenuation of transverse ultrasound in germanium, silicon, and diamond crystals is considered with allowance for competing isotopic and anharmonic scattering processes. The dependence of the attenuation of transverse ultrasound on the direction of the wave vector of quasi-transverse phonons is analyzed within an anisotropic continuum model. The Landau—Rumer mechanism is considered for anharmonic scattering processes. Given the second-and third-order elastic moduli, the parameters are found determining ultrasonic absorption in the above crystals with various degrees of isotopic disorder. The attenuation coefficients of transverse ultrasound associated with isotopic and anharmonic scattering processes are shown to have qualitatively different angular dependences. Therefore, from studying the anisotropic attenuation of ultrasound in cubic crystals, one can determine the dominant mechanism of ultrasonic absorption in isotopically modified crystals.  相似文献   

13.
The objective of this study was to devise an algorithm that can accurately estimate the attenuation along the propagation path (i.e., the total attenuation) from backscattered echoes. It was shown that the downshift in the center frequency of the backscattered ultrasound echoes compared to echoes obtained in a water bath was calculated to have the form Deltaf=mf(o)+b after normalizing with respect to the source bandwidth where m depends on the correlation length, b depends on the total attenuation, and f(o) is the center frequency of the source as measured from a reference echo. Therefore, the total attenuation can be determined independent of the scatterer correlation length by measuring the downshift in center frequency from multiple sources (i.e., different f(o)) and fitting a line to the measured shifts versus f(o). The intercept of the line gives the total attenuation along the propagation path. The calculations were verified using computer simulations of five spherically focused sources with 50% bandwidths and center frequencies of 6, 8, 10, 12, and 14 MHz. The simulated tissue had Gaussian scattering structures with effective radii of 25 mum placed at a density of 250 mm(3). The attenuation of the tissue was varied from 0.1 to 0.9 dB / cm-MHz. The error in the attenuation along the propagation path ranged from -3.5+/-14.7% for a tissue attenuation of 0.1 dB / cm-MHz to -7.0+/-3.1% for a tissue attenuation of 0.9 dB / cm-MHz demonstrating that the attenuation along the propagation path could be accurately determined using backscattered echoes from multiple sources using the derived algorithm.  相似文献   

14.
Results of an experimental study of nonlinear attenuation and carrier frequency phase delay of weak ultrasonic pulses under the effect of an intense low-frequency wave in a bar resonator made from Karelian granite are presented. The effects observed in the experiment are analytically described in terms of the phenomenological equation of state containing hysteretic and dissipative nonlinearities. A frequency dependence of nonlinearity is revealed, and the effective values of nonlinear parameters of granite are estimated for the frequency range from 150 kHz to 1 MHz.  相似文献   

15.
Although bone sonometry has been demonstrated to be useful in the diagnosis of osteoporosis, much remains to be learned about the processes governing the interactions between ultrasound and bone. In order to investigate these processes, ultrasonic attenuation and backscatter in two orientations were measured in 43 human calcaneal specimens in vitro at 500 kHz. In the mediolateral (ML) orientation, the ultrasound propagation direction is approximately perpendicular to the trabecular axes. In the anteroposterior (AP) orientation, a wide range of angles between the ultrasound propagation direction and trabecular axes is encountered. Average attenuation slope was 18% greater while average backscatter coefficient was 50% lower in the AP orientation compared with the ML orientation. Backscatter coefficient in both orientations approximately conformed to a cubic dependence on frequency, consistent with a previously reported model. These results support the idea that absorption is a greater component of attenuation than scattering in human calcaneal trabecular bone.  相似文献   

16.
Ultrasound parameters (attenuation, phase velocity, and backscatter), bone mineral density (BMD), and microarchitectural features were measured on 29 human cancellous calcaneus samples in vitro. Regression analysis was performed to predict ultrasound parameters from BMD and microarchitectural features. The best univariate predictors of the ultrasound parameters were the indexes of bone quantity: BMD and bone volume fraction (BV/TV). The most predictive univariate models for attenuation, phase velocity, and backscatter coefficient yielded adjusted squared correlation coefficients of 0.69-0.73. Multiple regression models yielded adjusted correlation coefficients of 0.74-0.83. Therefore attenuation, phase velocity, and backscatter are primarily determined by bone quantity, but multiple regression models based on bone quantity plus microarchitectural features achieve slightly better predictive performance than models based on bone quantity alone.  相似文献   

17.
Accurately determining the attenuation along the propagation path leading to a region of interest could significantly improve diagnostic ultrasound tissue characterization since tissue characterization requires exact compensation for the frequency-dependent attenuation along the propagation path. In a previous study (JASA, 124:1367, 2008), it was shown that the total attenuation can be determined by using the backscattered echoes from multiple sources. The preliminary computer simulation results, had an average error between ?0.3 and +0.2 dB/MHz for the cases tested with a trend towards increasing error with increasing correlation length (i.e., characteristic size of the tissue microstructure of the scattering medium) and attenuation along the propagation path. Therefore, the goal of this study was to improve the accuracy of previously derived algorithm and reduce the dependence of the algorithm on correlation length and attenuation. In this study, the previous derivations were redone and the assumptions made by the algorithm regarding the scattering properties of the medium and the shape of the backscattered power spectrum were relaxed. The revised algorithm was then verified using computer simulations of five sources (6, 8, 10, 12, and 14 MHz, 50% bandwidth) exposing a homogeneous tissue region. The simulated tissue had microstructure following a Gaussian spatial correlation function (i.e., exp (?0.827(kaeff)2) where k is the wavenumber) with effective radii, aeff, of 5–55 μm (one size per simulated case) placed at a density of 250/mm3 (~5 scatterers/resolution cell for 14 MHz transducer). The attenuation of the tissue was also varied from 0.1 to 0.9 dB/cm-MHz. The computer simulations demonstrated that the modifications significantly improved the accuracy of the algorithm resulting in average errors between ?0.04 and 0.1 dB/MHz which is three times better than the error performance of the original algorithm.  相似文献   

18.
The efficacy of ultrasound-assisted thrombolysis as an adjunct treatment of ischemic stroke is being widely investigated. To determine the role of ultrasound hyperthermia in the process of blood clot disruption, the acousto-mechanical and thermal properties of clotted blood were measured in vitro, namely, density, speed of sound, frequency-dependent attenuation, specific heat, and thermal conductivity. The amplitude coefficient of attenuation of the clots was determined for 120 kHz, 1.0 MHz, and 3.5 MHz ultrasound at room temperature (20 +/- 2 degrees C). The attenuation coefficient ranged from 0.10 to 0.30 Np/cm in porcine clots and from 0.09 to 0.23 Np/cm in human clots. The experimentally determined values of specific heat and thermal conductivity for porcine clotted blood are (3.2 +/- 0.5) x 10(3) J/kg x K and 0.55 +/- 0.13 W/m x K, respectively, and for human clotted blood are (3.5 +/- 0.8) x 10(3) J/kg x K and 0.59 +/- 0.11 W/m x K, respectively. Measurements of the acousto-mechanical and thermal properties of clotted blood can be helpful in theoretical modeling of ultrasound hyperthermia in ultrasound-assisted thrombolysis and other high-intensity focused ultrasound applications.  相似文献   

19.
D Shore  C A Miles 《Ultrasonics》1988,26(1):31-36
It has been suggested that viscous losses, caused by the motion of myofibrils relative to their environmental fluid, could be the major cause of ultrasound attenuation in muscle. This Paper presents theoretical and experimental estimates of the viscous component of attenuation in suspensions of myofibrils. Experimental estimates were made by monitoring the effects of varying the viscosity and density of the suspending fluid and ranged from 0.55 to 0.72 cm2 g-1 protein at 7 MHz, when expressed as mass attenuation coefficients. This represented 16-22% of the total attenuation measured in suspensions. Corresponding theoretical calculations were lower: 0.44 and 0.21 cm2 g-1 protein, respectively, for suspensions with the myofibrils aligned along and across the direction of sound propagation. It was concluded that most of the attenuation was caused by other absorption processes.  相似文献   

20.
何昌杰  张威  巨金川  许流荣  曹鸿昌 《强激光与粒子束》2023,35(5):053004-1-053004-6
为实现模块化相对论速调管放大器功率、频率和相位的在线测量,对紧凑型高定向性高带宽的定向耦合器进行了仿真和实验研究。利用小孔耦合理论和相位叠加原理进行理论分析,设计了一种双孔紧凑型定向耦合器,在此基础上采用主、副波导正交连接,耦合孔沿轴向和角向二维分布的方法,进一步缩短了耦合器的长度。通过电磁仿真对耦合器各参数进行优化,模拟结果表明:当中心频率为10 GHz时,普通双孔定向耦合器对TM01模式的耦合度为-60.68 dB,在250 MHz的带宽内定向性大于20 dB,此时耦合区长度为3.49 cm。改进型定向耦合器对TM01模式的耦合度为-58.1 dB,在300 MHz的带宽内定向性大于20 dB,此时耦合区长度仅为1.8 cm(约0.6λ)。耦合器的冷腔实验测量结果与仿真结果符合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号