首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   

2.
The highest precision in the determination of nuclear and atomic masses can be achieved by Penning trap mass spectrometry. The mass value is obtained through a measurement of the cyclotron frequency of the stored charged particle. Two different approaches are used at the Penning trap mass spectrometer TRIGA-TRAP for the mass determination: the destructive Time-Of-Flight Ion Cyclotron Resonance (TOF-ICR) technique and the non-destructive Fourier Transform Ion Cyclotron Resonance (FT-ICR) method. New developments for both techniques are described, which will improve the detection efficiency and the suppression of contaminations in the case of TOF-ICR. The FT-ICR detection systems will allow for the investigation of an incoming ion bunch from a radioactive-beam facility on the one hand, and for the detection of a single singly charged ion in the Penning trap on the other hand.  相似文献   

3.
The TITAN facility at TRIUMF-ISAC will use four ion traps with the primary goal of determining nuclear masses with high precision, particularly for short lived isotopes with lifetimes down to approximately 10 ms. The design value for the accuracy of the mass measurement is 1 ×10???8. The four main components in the facility are an RF cooler/buncher (RFCT) receiving the incoming ion beam, an electron beam ion trap (EBIT) to breed the ions to higher charge states, a cooler Penning trap (CPET) to cool the highly charged ions, and finally the measurement Penning trap (MPET) for the precision mass determination. Additional goals for this system are laser spectroscopy on ions extracted from the RFCT and beta spectroscopy in the EBIT (in Penning trap mode) on ions that are purified using selective buffer gas cooling in the CPET. The physics motivation for the mass measurements are manifold, from unitarity tests of the CKM matrix to nuclear structure very far from the valley of stability, nuclear astrophysics and the study of halo-nuclei. As a first measurement the mass of 11Li will be determined. With a lifetime of 8.7 ms and a demonstrated production rate of 4×104 ions/sec at ISAC the goal for this measurement at TITAN is a relative uncertainty of 5×10???8. This would check previous conflicting measurements and provide information for nuclear theory and models.  相似文献   

4.
Penning traps are widely used for high-precision mass measurements of radionuclides related to nuclear astrophysics studies and the evolution of nuclear structure far away from stability. With the stopping of secondary beams in gas cells together with advanced ion-beam manipulation techniques their reach has been extended to rare isotopes of essentially all elements. The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt has recently demonstrated that even high-precision mass measurements of transfermium elements can be performed despite low production rates of only about one particle per second. This important milestone opens new perspectives for the study of superheavy elements with ion traps.  相似文献   

5.
For exotic nuclear species, short decay half-lives make precision mass measurements particularly challenging. Combining isobaric purification and the mass measurement in the same trap may offer an interesting compromise between losses due to half-life and measurement precision. Here we discuss a mass measurement performed in a preparation Penning trap, and perform a study of the resonance lineshape.  相似文献   

6.
张耀锋  尹远  曹蕾  张春雷 《强激光与粒子束》2021,33(8):086002-1-086002-7
利用有限元程序ANSYS,开展潘宁离子俘获装置的电场模拟计算。基于电场数据,结合Runge_Kutta_Fehlberg方法进行潘宁装置在多种模式下的离子俘获过程模拟工作,得到了准确的离子俘获结果。并对实际条件下具有偏离理想情况电极分布的俘获装置进行了优化计算及电场分析,同样实现了离子俘获过程的准确模拟。有限元方法用于离子俘获装置的电场计算以及后续离子俘获过程模拟流程的建立,为类似的电势阱离子俘获装置建造运行提供有效的技术支持。  相似文献   

7.
The low-energy beam and ion trap facility LEBIT at NSCL/MSU is at present the only facility where precision experiments are performed with stopped rare isotope beams produced by fast-beam fragmentation. LEBIT combines high-pressure-gas stopping with advanced ion manipulation techniques to provide brilliant low-energy beams. So far these beams have mainly been used for mass measurements on short-lived rare isotopes with a 9.4T Penning trap mass spectrometer. Recent examples include 70m Br , located at the proton dripline, 32Si and the iron isotopes 63-65Fe . While the measurement of 32Si helps to solve a long-standing dispute over the validity of the isobaric multiplet mass equation (IMME) for the A = 32 , T = 2 multiplet, the mass measurements of 65m,g Fe marked the first time a nuclear isomeric state has been discovered by Penning trap mass spectrometry.  相似文献   

8.
We review the present and future of trap-assisted structure studies of odd, neutron-rich Tc, Ru, Rh and Pd isotopes at the limits of present experimental techniques. These nuclei of refractory elements are produced in light-particle induced fission and filtered by their mass number with the IGISOL mass separator. Further mass separation with the JYFLTRAP Penning trap system provides a clean, monoisotopic beam perfectly suited for precise nuclear spectroscopy. Connecting the IGISOL and the JYFLTRAP facilities to the recently installed MCC30/15 cyclotron opens new prospects for post-trap spectroscopy of very exotic, neutron-rich nuclei.  相似文献   

9.
10.
The MLLTRAP at the Maier-Leibnitz-Laboratory (Garching) is a new Penning trap facility designed to combine several novel technologies to decelerate, charge breed, cool, bunch and purify the reaction products and perform high-accuracy nuclear and atomic mass measurements. It is now in the commissioning phase, achieving a mass-resolving power of about 105 in the purification trap for stable ions.  相似文献   

11.
孙保华  孟杰 《物理》2010,39(10)
原子核质量的精密测量是原子核物理学的重要课题之一,它对探索奇特原子核的结构和性质、重元素核合成之谜等均具有重大意义.文章简要介绍了原子核质量高精度测量的两个主要设备——储存环和潘宁阱,并回顾了近年来原子核质量精密测量在核结构、元素核合成、新同核异能素等领域中的研究亮点,探讨原子核质量测量的发展趋势.  相似文献   

12.
The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.  相似文献   

13.
14.
Approximately one million antiprotons have been captured in a large Penning trap at the Low Energy Antiproton Ring at CERN. These antiprotons have subsequently been cooled by electron cooling. This has opened new discussions of the possible use of ultra-low energy antiprotons for nuclear, atomic, and gravitational physics. For most of these experiments, it will be necessary to extract the antiprotons from the trap in a continuous or bunched beam, allowing the timing structure to be used for post-acceleration schemes or as a time tag for the subsequent measurements. We have designed an extraction scheme to accomplish this and have tested portions of it using a smaller Penning trap loaded with protons. First results in generating a time-correlated beam of particles from a Penning trap are presented.  相似文献   

15.
The proposed Penning trap mass spectrometer, to be located at the TASCC facility of the Chalk River Laboratories, is described. The facility will be used for precise atomic mass determinations among both stable and unstable nuclides. The unstable nuclides would be produced in heavy ion reactions using the TASCC facility. The products from these reactions would be collected using an He-jet transport system loaded with NaCl aerosols. After transport to a background free area, the nuclides of interest would be laser desorbed and resonantly ionized. Subsequently, these ions would be accumulated in a Paul trap, cooled and injected into a precision Penning trap mass spectrometer for mass analysis.  相似文献   

16.
Mass measurements on (33,34,42,43)Ar were performed using the Penning trap mass spectrometer ISOLTRAP and a newly constructed linear Paul trap. This arrangement allowed us, for the first time, to extend Penning trap mass measurements to nuclides with half-lives below one second ( 33Ar: T(1/2) = 174 ms). A mass accuracy of about 10(-7) (deltam approximately 4 keV) was achieved for all investigated nuclides. The isobaric multiplet mass equation was checked for the A = 33, T = 3/2 quartet and found to be inconsistent with the generally accepted quadratic form.  相似文献   

17.
JYFLTRAP is a Penning trap system at the accelerator laboratory in Jyväskylä, Finland that enables high-precision experiments with stored, exotic species that are produced at the IGISOL facility. On one hand, these can be performed within the trap itself, like e.g. mass spectrometry. On the other hand, the trap can be used to provide the highly purified species for further experiments, e.g. for trap-assisted nuclear decay spectroscopy. This contribution focuses on these two possible applications with the presentation of some recent results on superallowed beta decays.  相似文献   

18.
Penning traps are used to perform very precise mass measurements on exotic and stable nuclei covering a variety of topics. In order to reach the highest accuracy, only one ion must be stored and measured in the trap. The mass is determined from the oscillation frequencies, by detecting the current the stored ion induces on the trap electrodes. This is a well-known technique demonstrated for ions with low or medium mass-to-charge ratios. Another technique recently proposed, and referred to as Quantum Sensor, aims at extending the applicability of single-ion Penning-trap measurements through the full atomic mass scale. The technique substitutes the electronic detection by the detection of fluorescence photons from a laser-cooled ion stored in a second Penning trap, thereafter this ion interacts with the ion of interest. The new device is under completion at the University of Granada (Spain) within the project TRAPSENSOR. This paper will present the status of this project.  相似文献   

19.
High-precision mass measurements as performed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN are an important contribution to the investigation of nuclear structure. Precise nuclear masses with less than 0.1 ppm relative mass uncertainty allow stringent tests of mass models and formulae that are used to predict mass values of nuclides far from the valley of stability. Furthermore, an investigation of nuclear structure effects like shell or sub-shell closures, deformations, and halos is possible. In addition to a sophisticated experimental setup for precise mass measurements, a radioactive ion-beam facility that delivers a large variety of short-lived nuclides with sufficient yield is required. An overview of the results from the mass spectrometer ISOLTRAP is given and its limits and possibilities are described.   相似文献   

20.
SHIPTRAP is an ion trap facility which is being set up to deliver very clean and cool beams of singly-charged recoil ions produced at the SHIP velocity filter at GSI Darmstadt. SHIPTRAP consists of a gas cell for stopping and thermalizing high-energy recoil ions from SHIP, a rf ion guide for extraction of the ions from the gas cell, a linear rf trap for accumulation and bunching of the ions, and a Penning trap for isobaric purification. The physics programme of the SHIPTRAP facility comprises mass spectrometry, nuclear spectroscopy, laser spectroscopy and chemistry of transeinsteinium elements. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号