首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the $\bar{K}N$ system is submerged in nuclear medium the $\bar{K}N$ scattering amplitude and the final state branching ratios exhibit a strong energy dependence when going to energies below the $\bar{K}N$ threshold. A sharp increase of $\bar{K}N$ attraction below the $\bar{K}N$ threshold provides a link between shallow $\bar{K}$ -nuclear potentials based on the chiral $\bar{K}N$ amplitude evaluated at threshold and the deep phenomenological optical potentials obtained in fits to kaonic atoms data. We show the energy dependence of the in-medium K ??? p amplitude and demonstrate the impact of energy dependent branching ratios on the Λ-hypernuclear production rates.  相似文献   

2.
A chiral-motivated \({\bar{K}N - \pi\Sigma - \pi\Lambda}\) potential was constructed and used in Faddeev calculations of different characteristics of \({\bar{K}NN - \pi\Sigma N}\) system. First of all, binding energy and width of the K ? pp quasi-bound state were newly obtained. The low-energy K ? d scattering amplitudes, including scattering length, together with the 1s level shift and width of kaonic deuterium were calculated. Comparison with the results obtained with the phenomenological \({\bar{K}N - \pi\Sigma}\) potential demonstrates that the chiral-motivated potential gives more shallow K ? pp state, while the characteristics of K ? d system are less sensitive to the form of \({\bar{K}N}\) interaction.  相似文献   

3.
K ?? nuclear optical potentials are constructed from in-medium ${\bar K}N$ scattering amplitudes within a chirally motivated coupled-channel model. The strong energy and density dependence of the scattering amplitudes at and below threshold leads to K ?? potential depths ?Re $V_{K^-}(\rho_0) \approx 80 -100$ ?MeV. Self consistent calculations of K ?? nuclear quasi-bound states are discussed.  相似文献   

4.
A phenomenological isospin-dependent $\bar{K}N\hbox{-}\pi\Sigma$ potential reproducing a medium KEK value of 1s kaonic hydrogen level shift instead of a K ? p scattering length is constructed. The corresponding three-body $\bar{K}NN\hbox{-}\pi\Sigma N$ calculation using the obtained potential is performed.  相似文献   

5.
N. V. Shevchenko 《Few-Body Systems》2013,54(7-10):1187-1189
The three-body Faddeev-type AGS equations were used for investigation of scattering states in the ${\bar{K} NN - \pi \Sigma N}$ system. Newly constructed “chirally motivated” potentials describing ${\bar{K} N - \pi \Sigma}$ interaction were used as an input. The results of the three-body calculations were then used for calculations of the corresponding 1s level shift and width of kaonic deuterium.  相似文献   

6.
Dependence of the K ? d scattering length on the different models of ${\bar{K}N - \pi \Sigma}$ interaction describing ??(1405) resonance in terms of one or two poles is investigated. The ${\bar{K}NN - \pi \Sigma N}$ system is described by coupled-channel Faddeev equations in AGS form. The two-body ${\bar{K}N - \pi \Sigma}$ interaction models reproduce all existing experimental data on K ? p scattering and K ? p atom level shift. The comparison with several approximations, commonly used for such calculations, is done.  相似文献   

7.
Hyperfine induced $1s2s\ ^1$ S $_0 \rightarrow 1s^2\ ^1$ S0 M1 transition probabilities of He-like ions have been calculated from relativistic configuration interaction wavefunctions including the frequency independent Breit interaction and QED effects. Present results for 151Eu and 155Gd are in good agreement with previous calculations [L.N. Labzowsky et al., Phys. Rev. A 63, 054105 (2001)]. Electronic data are given in terms of a general scaling law in Z that, given isotopic nuclear spin and magnetic moment, allows hyperfine induced decay rates to be estimated for any isotope. The results should be helpful for future experimental investigations on QED and parity non-conservation effects.  相似文献   

8.
The complete Breit potential contains the terms of spin-spin, spin-orbit, orbit-orbit, and tensor force interactions which become singular at short distance. Most of previous calculations of the non-relativistic potential quark model considered only the spin-spin interaction and substituted the $ \delta$ (r) -function by the Gaussian or Yukawa potential in coordinate space. Recently, a method to regularize the Breit potential consists of subtracting terms that cancel the singularity at the origin but leave the intermediate- and long-distance behavior unchanged. Motivated by this work we regularize the Breit potential by multiplying the singular terms in momentum space identically by the form factor [ $ \mu^{2}_{}$ /(q 2 + $ \mu^{2}_{}$ )]2 of the momentum transfer q , where the screened mass μ increases with the reduced mass of the meson. With the regularized Breit potential we calculate the masses of 30 common mesons and the new $ \eta_{b}^{}$ meson. We find that the calculated masses from light to heavy mesons agree well with experimental data. The inclusion of such a dependence of the reduced mass in the potential regularization improves the spin-spin splittings of $ \eta_{c}^{}$ -J/ $ \psi$ and $ \eta_{b}^{}$ - $ \Upsilon$ (1S) . The spin-orbit and tensor force interactions in the Breit potential lead to the splittings of $ \chi_{{c0}}^{}$ , $ \chi_{{c1}}^{}$ , and $ \chi_{{c2}}^{}$ .  相似文献   

9.
We study the $\overline{\nu}_{e}-e$ scattering from low to ultrahigh energy in the framework of Higgs Triplet Model (HTM). We add the contribution of charged Higgs boson exchange to the total cross section of the scattering. We obtain the upper bound $h_{ee}/M_{H^{\pm}}\lesssim2.8\times10^{-3}~\mbox{GeV}^{-1}$ in this process from low energy experiment. We show that by using the upper bound obtained, the charged Higgs contribution can give enhancements to the total cross section with respect to the SM prediction up to 5.16 % at E≤1014 eV and maximum at $s\approx M_{H^{\pm}}^{2}$ and would help to determine the feasibility experiments to discriminate between SM and HTM at current available facilities.  相似文献   

10.
The wave and scattering operators for the equation $$\left( {\square + m^2 } \right)\varphi + \lambda \varphi ^2 = 0$$ withm>0 and λ>0 on four-dimensional Minkowski space are analytic on the space of finite-energy Cauchy data, i.e.L 2 1 (R 3)⊕L 2(R 3).  相似文献   

11.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

12.
The main features of coupled-channel ${\bar K}N$ dynamics near threshold and its repercussions in few-body $\bar K$ -nuclear systems are briefly reviewed highlighting the I?=?1/2 ${\bar K}NN$ system. For heavier nuclei, the extension of mean-field calculations to multi- $\bar K$ nuclear quasibound states is discussed focusing on kaon condensation.  相似文献   

13.
Chemiluminescence experiments have been performed to assess the state of current $\mathrm{CO}_{2}^{*}$ kinetics modeling. The difficulty with modeling $\mathrm{CO}_{2}^{*}$ lies in its broad emission spectrum, making it a challenge to isolate it from background emission of species such as CH? and CH2O?. Experiments were performed in a mixture of 0.0005H2+0.01N2O+0.03CO+0.9595Ar in an attempt to isolate $\mathrm{CO}_{2}^{*}$ emission. Temperatures ranged from 1654 K to 2221 K at two average pressures, 1.4 and 10.4 atm. The unique time histories of the various chemiluminescence species in the unconventional mixture employed at these conditions allow for easy identification of the $\mathrm{CO}_{2}^{*}$ concentration. Two different wavelengths to capture $\mathrm{CO}_{2}^{*}$ were used; one optical filter was centered at 415 nm and the other at 458 nm. The use of these two different wavelengths was done to verify that broadband $\mathrm{CO}_{2}^{*}$ was in fact being captured, and not emission from other species such as CH? and CH2O?. As a baseline for time history and peak magnitude comparison, OH? emission was captured at 307 nm simultaneously with the two $\mathrm{CO}_{2}^{*}$ filters. The results from the two $\mathrm{CO}_{2}^{*}$ filters were consistent with each other, implying that indeed the same species (i.e., $\mathrm{CO}_{2}^{*}$ ) was being measured at both wavelengths. A first-generation kinetics model for $\mathrm{CO}_{2}^{*}$ and CH2O? was developed, since no comprehensively validated one exists to date. CH2O? and CH? were ruled out as being present in the experiments at any measurable level, based on calculations and comparisons with the data. Agreement with the $\mathrm{CO}_{2}^{*}$ model was only fair, which necessitates future improvements for a better understanding of $\mathrm{CO}_{2}^{*}$ chemiluminescence as well as the kinetics of the ground state species.  相似文献   

14.
A three-body calculation for the \({^4_{\Lambda} \rm{He}}\) and \({^6_{\Lambda}{\rm H}}\) hypernuclei has been undertaken. The respective cores are \({^4_{\Lambda}{\rm H}}\) . The interactions in the \({^6_{\Lambda}{\rm He}}\) system, modeled as \({^4_{\Lambda} {\rm H+p+n}}\) , are reasonably well known. For example, the p n interaction is well determined by the p n scattering data, the \({^4_{\Lambda}{\rm H}}\) p interaction can be fitted to the \({^5_{\Lambda}{\rm He}}\) binding energy. The \({^4_{\Lambda}{\rm He}}\) n interaction can be fitted to α–n scattering data. For the 4He–n system the s-wave can be modeled alternatively as a repulsive potential or as an attractive potential with a forbidden bound state. We explore these alternatives in 6He, because the interaction comes into play in modeling \({^6_{\Lambda}{\rm He}}\) as well as in our \({^4_{\Lambda}{\rm H}}\) + n + n model of \({^6_{\Lambda}{\rm H}}\) , where the valence neutrons are Pauli blocked from the s-shell of the core nucleus.  相似文献   

15.
Quasielastic scattering angular distributions have been measured for the 7Be + 9Be system at E lab = 17 , 19 and 21MeV in the angular range $ \theta_{{cm}}^{}$ = 24° - 57° . An optical model (OM) analysis of these data has been carried out in order to extract optical potential parameters and reaction cross-sections. One-proton stripping cross-sections were also measured for this system at E lab = 19 and 21MeV. These transfer angular-distribution data were compared with the finite-range distorted-wave Born approximation (FRDWBA) calculations. For the 7Li + 9Be system quasielastic scattering angular distributions were measured and emitted light charged particles were detected at E lab = 15.75 , 24.00 and 30.00MeV in the angular range $ \theta_{{cm}}^{}$ = 7° - 70° . Fusion cross-sections were obtained by reproducing the measured $ \alpha$ -evaporation spectra from the compound nucleus at backward angles with the statistical model calculations. The ratios of the experimental fusion cross-sections to the total reaction cross-sections (obtained from OM analysis) were found to be small. This result suggests that the break-up process has a strong influence on the fusion process leading to a reduction in the fusion cross-section.  相似文献   

16.
The 600 and 750 MeV proton nucleus elastic scattering cross section and polarization calculations have been performed in the framework of the Glauber model to test the pp and pn scattering amplitudes deduced from a phase shift analysis by Bystricky, Lechanoine and Lehar. It is well known that up to now we do not possess a non-phenomenological NN scattering matrix at intermediate energies. However proton-nucleus scattering analyses are used to extract information about short range correlations1), Δ resonance2) or pion condensation presences)... etc. Most scattering calculations made at these energies have been done with phenomenological NN amplitudes having a gaussian q-dependence $$A(q) = \frac{{k\sigma }}{{4\pi }}(\alpha + i) e^{ - \beta ^2 q^2 /2} $$ and $$C(q) = \frac{{k\sigma }}{{4\pi }}iq(\alpha + i) D_e - \beta ^2 q^2 /2$$ K andσ being respectively the projectile momentum and the total pN total cross section. The parameters α, β and D are badly known and are adjusted by fitting some specific reactions as p+4He elastic scattering4). Even when these amplitudes provide good fits to the data, our understanding of the dynamics of the scattering remains obscure.  相似文献   

17.
The process p $ \bar{{p}}$ $ \rightarrow$ $ \Lambda_{c}^{+}$ $ \bar{{\Lambda}}_{c}^{-}$ is investigated within the handbag approach. It is shown to lowest order of perturbative QCD that, under the assumption of restricted parton virtualities and transverse momenta, the dominant dynamical mechanism, characterized by the partonic subprocess u $ \bar{{u}}$ $ \rightarrow$ c $ \bar{{c}}$ , factorizes in the sense that only the subprocess contains highly virtual partons, namely a gluon, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling the latter functions by overlaps of light-cone wave functions for the involved baryons we are able to predict cross-sections and spin correlation parameters for the process of interest.  相似文献   

18.
The features of the new interaction model ESC08c in ${\Lambda N}$ , ${\Sigma N}$ and ${\Xi N}$ channels are demonstrated single hyperon potentials ${U_Y(Y=\Lambda, \Sigma, \Xi)}$ in nuclear matter on the basis of the G-matrix theory. (K ?, K +) productions of ${\Xi}$ hypernuclei are studied with ${\Xi}$ -nucleus folding potentials.  相似文献   

19.
The structure of the 18O nucleus at excitation energies above the $ \alpha$ decay threshold was studied using 14C + $ \alpha$ resonance elastic scattering. A number of states with large $ \alpha$ reduced widths have been observed, indicating that the $ \alpha$ -cluster degree of freedom plays an important role in this N $ \ne$ Z nucleus. A 0+ state with an $ \alpha$ reduced width exceeding the single-particle limit was identified at an excitation energy of 9.9±0.3 MeV. We discuss evidence that states of this kind are common in light nuclei and give possible explanations of this feature.  相似文献   

20.
Charmonium ( \({c \bar{c}}\) ) bound states in few-nucleon systems, 2H, 4He and 8Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective \({(c \bar{c})}\) –nucleon (N) interaction. The relation between two-body \({(c \bar{c})}\) N scattering length \({a_{c\bar{c}-N}}\) and the binding energies B of \({(c \bar{c})}\) –nucleus bound states are given. Recent lattice QCD data of \({a_{c\bar{c}-N}}\) corresponds to \({B \simeq 0.5}\) MeV for \({(c \bar{c})-^{4}}\) He and 2 MeV for \({(c \bar{c})-^{8}}\) Be in our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号