首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single crystal elastic constants of aluminum have been measured using a piezoelectric composite oscillator from room temperature to just 20 K below the melting point. The elastic moduli differ markedly from previous high temperature results, but match in well with previous cryogenic results. Over the temperature range investigated the isothermal bulk modulus and the two shear moduli have a simple exponential dependence on isobaric volume, and the cryogenic data indicate this dependence may be preserved down to absolute zero. As has been found previously for a wide range of materials, the isothermal bulk modulus and the shear modulus (c11 – c12)2 appear to be continuous functions of volume through the melting expansion, and melting seems to find its origin in the mechanical instability associated with this shear modulus vanishing at the volume of the melt at the freezing point. Grüneisen's parameter divided by the molar volume is very nearly independent of isobaric volume.  相似文献   

2.
The elastic moduli and their temperature and pressure derivatives for sintered, isotropic, polycrystalline aluminum nitride ceramic have been determined. The temperature derivatives of the elastic moduli are somewhat smaller than those of other wurtzite structure semiconductors, and the pressure derivative of the shear modulus is very small. The mode Grüneisen gamma of the shear mode is essentially zero, while the elastic Grüneisen constant agrees well with the thermodynamic Grüneisen constant. Both the bulk and shear modulus conform to the Keyes relationship.  相似文献   

3.
Resonant ultrasound spectroscopy was used to study the elastic constants and internal friction of two nanocrystalline palladium samples over the temperature range 3–300 K. The first material, nc-Pd, had a grain size of 80–100 nm and a density 93% of that of single-crystal bulk palladium. The second material, nc-PdSi containing 0.5 at.% Si, had a grain size of 15–22 nm and a density 97% of the single-crystal value. The bulk and shear moduli were significantly reduced in the nc-Pd material from that expected based on single-crystal data, the effect being greater for the bulk modulus. The moduli of nc-PdSi were reduced 4–5% from that based on crystalline Pd. As compared to previous reports of the elastic moduli of nanocrystalline palladium (grain size 5–15 nm) the present values for the larger-grained nc-Pd are comparable, but the present values for the smaller-grained nc-PdSi are considerably higher. An internal friction peak and a modulus defect were found in the nc-Pd material, but not in the nc-PdSi material. These effects are attributed to a relaxation process at the grain boundaries. The temperature dependence of the moduli is similar to that of crystalline palladium and is strongly influenced by electronic effects.  相似文献   

4.
A nondestructive method is reported to measure the high‐temperature modulus of 3C‐SiC coating and bulk samples using Raman scattering. Within the temperature range from 20 °C to 900 °C, both the longitudinal optical and transverse optical phonon frequencies decrease linearly as the temperature increases. The elastic moduli derived from the longitudinal optical phonon agree with previous results measured using other techniques. It is further shown that the grain size and impurity only have a negligible effect on the elastic modulus of 3C‐SiC. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to analyse the lattice parameters, elastic constants, bulk moduli, shear moduli and Young's moduli of WSi2. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method, is applied to the study of the elastic properties and vibrational effects. The athermal elastic constants of WSi2 are calculated as a function of pressure up to 35GPa. The relationship between bulk modulus and temperature up to 1200K is also obtained. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs function. The calculated results are in good agreement with the experimental data.  相似文献   

6.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

7.
We present first-principle calculations on the structural, elastic, and high-pressure properties of rubidium halides compounds, using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation. Results are given for lattice constant, bulk modulus and its pressure derivative. The pressure transition at which these compounds undergo structural phase transition from NaCl-type to CsCl-type structure are calculated and compared with previous calculations and available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline RbF, RbCl, RbBr, and RbI aggregates. We estimated the Debye temperature of these compounds from the average sound velocity.  相似文献   

8.
The purpose of the present paper is to investigate the temperature and pressure dependences of the elastic properties of cerium dioxide using the statistical moment method (SMM). The equation of states of bulk CeO2 is derived from the Helmholtz free energy, and the pressure dependences of the elastic moduli like the bulk modulus, BT, shear modulus, G, Young’s modulus, E, and elastic constants (C11, C12, and C44) are presented taking into account the anharmonicity effects of the thermal lattice vibrations. In the present study, the influence of temperature and pressure on the elastic moduli and elastic constants of CeO2 has also been studied, using three different interatomic potentials. We compare the results of the present calculations with those of the previous theoretical calculations as well as with the available experiments.  相似文献   

9.
The sound velocities and their pressure and temperature variations of Se and As2Se3 glasses have been determined by means of a pulse superpositions method, and other elastic constants and their pressure and temperature derivatives were calculated from these data. The bulk modulus was found to be 94·6 kbar for Se glass and 143·7 kbar As2Se3 glass, both of which are higher than the values calculated from the previous compression data. No anomaly was observed in any of the pressure and temperature dependence of elastic behavior of these glassses. Furthermore, the comparison of the pressure and temperature derivatives of the bulk modulus indicates that the thermodynamic self-consistency is satisfied on these materials. The bulk moduli of these glasses and crystalline As and Se were used to obtain an empirical bulk modulus-volume relationship for compounds in the As?Se system. The acoustic Grüneisen parameter was calculated and compared with the thermal Grüneisen parameter.  相似文献   

10.
王军强  欧阳酥 《物理学报》2017,66(17):176102-176102
玻璃-液体转变现象,简称玻璃转变,被诺贝尔物理学奖获得者安德森教授评为最深奥与重要的凝聚态物理问题之一.金属玻璃作为典型的非晶态物质,具有与液体相似的无序原子结构,因此又称为冻结了的液态金属,是研究玻璃转变问题的理想模型材料.当加热至玻璃转变温度,或者加载到力学屈服点附近时,金属玻璃将会发生流动.由于热或应力导致的流动现象对金属玻璃的应用具有重要意义.本文简要回顾了金属玻璃流变现象,综述了流变扩展弹性模型的研究进展和未来发展趋势.  相似文献   

11.
The fine structure of the Rayleigh line wing was studied experimentally in a broad temperature range in the viscous guaiacol liquid. The propagation velocity and the absorption coefficient of the transverse hypersound were determined by the Rayleigh line wing spectra at temperatures from ?27 to ?85°C. The transverse hypersound absorption is shown to pass through its maximum at a temperature of ?34°C. The experimental data for two vitrifying viscous liquids, namely, guaiacol and salol were analyzed. The limiting elastic bulk moduli were found to intersect at the crystallization temperature and the limiting shear modulus to vanish at this temperature. These and other specific features of the guaiacol and salol behavior at the crystallization temperature, revealed in this and previous our studies, point to the possibility of the existence of two phases in a liquid.  相似文献   

12.
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.  相似文献   

13.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

14.
The Young’s moduli along the [100] and [110] crystallographic directions and the shear modulus along the [100] direction in a high-purity yttrium garnet ferrite single crystal are measured in the temperature range from 20 to 600°C. All the independent elastic constants are calculated for this temperature range. The behavior of the elastic moduli and elastic anisotropy factor is analyzed in the vicinity of the critical temperature of the magnetic phase transition.  相似文献   

15.
The sound velocities for longitudinal and transverse waves have been measured in single crystalline BaFCl at room temperature using ultrasonic pulse echo and Brillouin scattering techniques. The complete set of elastic constants is deduced and lead to the bulk moduli values of BaFCl at ambiant conditions (, , ) which are compared with those obtained by a shell model. Moreover, using the ultrasonic technique under pressure, the pressure derivatives of the second order elastic constants at 298 K have been determined up to 0.3 GPa. All moduli increase linearly with pressure in this pressure range, allowing to determine directly and separately the first derivative of the bulk modulus B'0 = 5.8. These data are used to calculate a Murnaghan equation of state. A detailed comparison is given between our results with those recently obtained by X-ray diffraction on powder or calculated using the local density approximation method. Finally, the anisotropy of BaFCl under pressure is discussed. Received: 19 March 1998 / Revised: 15 May 1998 / Accepted: 19 May 1998  相似文献   

16.
Dependence of bulk modulus on both pressure and temperature, the elastic constants Cij and the pressure and temperature dependence of normalized volume V/Vo of cubic Ni2MnGa alloy are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus and temperature up to 800 K and obtain the relationships between bulk modulus B and pressures at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure. Moreover, the temperature dependences of the Debye temperature are also analysed. The calculated results are in agreement with the available experimental data and the previous theoreticM results.  相似文献   

17.
A relation between the elastic moduli and Poisson’s ratio of crystalline and vitreous solids is considered. The feasibility of introducing the averaged bulk modulus, which has the same attributes as other elastic moduli, is substantiated. A relationship between the Grüneisen parameter and Poisson’s ratio is discussed.  相似文献   

18.
The ultrasonic velocity of the alkali-borosilicate with different transition metal oxides (TMO) has been studied using the pulse echo technique. The elastic moduli such as elastic constant and bulk modulus have been obtained from the experimental data. Changes in the structure with different gamma irradiation doses have been investigated by using FTIR spectroscopy and ultrasonic studies. The results show that structural changes in the BO3 to BO4 due to TMO and irradiation are obtained.  相似文献   

19.
The five independent moduli required to construct the complete monocrystal elastic modulus tensor of the hexagonal-symmetry superhard compound ReB(2) were measured from 308 to 5 K using resonant ultrasound spectroscopy on a special-texture polycrystal. This is possible because, confirmed by X-ray diffraction, the specimen measured was composed of grains with hexagonal axes parallel so that its polycrystal elastic response is identical to a monocrystal and because hexagonal-symmetry solids are elastically isotropic in the plane perpendicular to the hexagonal axis. Along the hexagonal (c) axis, C(33) (0) = 1021 GPa, nearly equal to C(11) of diamond, and consistent with the superhard properties. However, in the (softer) isotropic plane, C(11) (0) = 671 GPa, much lower than diamond. The changes of C(ij) with temperature are very small and smooth. The Debye temperature was computed to be 738 K, and using a high-temperature approximation, the Gru?neisen parameter is γ = 1.7.  相似文献   

20.
Using the particle swarm optimization algorithm on crystal structure prediction,we first predict that Mg Y alloy undergoes a first-order phase transition from Cs Cl phase to P4/NMM phase at about 55 GPa with a small volume collapse of 2.63%.The dynamical stability of P4/NMM phase at 55 GPa is evaluated by the phonon spectrum calculation and the electronic structure is discussed.The elastic constants are calculated,after which the bulk moduli,shear moduli,Young's modui,and Debye temperature are derived.The brittleness/ductile behavior,and anisotropy of two phases under pressure are discussed in details.Our results show that external pressure can change the brittle behavior to ductile at10 GPa for Cs Cl phase and improve the ductility of Mg Y alloy.As pressure increases,the elastic anisotropy in shear of Cs Cl phase decreases,while that of P4/NMM phase remains nearly constant.The elastic anisotropic constructions of the directional dependences of reciprocals of bulk modulus and Young's modulus are also calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号