首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
MeV ion induced mixing in the nanoscale regime for Au and Ag nanoislands on silicon substrates has been studied. Au and Ag nanoislands are grown on silicon substrates at room temperature and irradiated with 1.5-MeV Au2+ ions at various fluences. Cross-sectional high-resolution transmission electron microscopy and Rutherford backscattering spectrometry (RBS) are used to study the ion-beam mixing in Au/SiOx/Si and Ag/SiOx/Si systems. We observe a metastable mixed phase for the Au–Si system at a fluence of 1×1014 ionscm-2, while no mixed phase is formed for the Ag–Si system. For both Au–Si and Ag–Si systems, a part of the islands is pushed into the substrate. The mixed phase of the Au–Si system is found to be crystalline in nature. The higher eutectic temperature and lower heat of mixing of the Ag–Si system compared to the Au–Si system could be responsible for the lack of mixing and silicide formation in the Ag–Si system. PACS 61.80.Jh; 61.82.Rx; 68.37.Lp; 64.75.+g; 61.46.+w  相似文献   

3.
A microstructural study of DC-sputtered Fe93−xZr3B4Agx films on Si(0 0 1) substrates has been carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). All samples were deposited as a function of additive Ag content (x=0–6 at%), and annealed in the range of temperature, 300–600°C, for 1 h in order to obtain enhanced soft magnetic properties. Through XRD and TEM investigation, Ag-free Fe93Zr3B4 films on Si(0 0 1) substrates consisted of nano-crystalline Fe-based phases. In the presence of Ag additive element, the microstructure of as-deposited Fe93−xZr3B4Agx films consisted of a mixture of majority of Fe-based amorphous and Ag crystalline phases. In this case, additive element, Ag played a role in retarding the formation of Fe-based crystalline phases during deposition, and insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. As the content of Ag increased, the intensity of Ag crystalline XRD peak increased. Crystallization of Fe-based amorphous phase in the matrix of Fe88Zr3B4Ag5 thin films occurred at an annealing temperature of 400°C. In the case of Fe88Zr3B4Ag5 films annealed at 500°C, a much enhanced permeability of the Fe-based alloy thin films associated with nano-crystalline phases was achieved.  相似文献   

4.
5.
A modified Monte Carlo method combined with quenched molecular dynamics simulation is used to determine mixing energetics and concentration profiles at interface for systems containing mono-and bilayers of adatoms adsorbed on FCC (100) crystal surface. The systems under consideration are constructed via Lennard–Jones potential at temperatures near 0 K. For systems with monolayer of adatoms, intermixing at the interface becomes preferable with increasing magnitude of the potential well-depth ratio of adatom to substrate atom. The increasing tendency of intermixing is linearly enhanced when the adatom becomes smaller than the substrate atom, otherwise, the intermixing trend is non-linear and weaker. For systems with bilayers of adatoms, complex development of concentration profile is observed along with increasing magnitude of the potential well-depth ratio and atomic size difference between adatom and substrate atom. This behaviour is related to the interplay between contributions of asymmetric bond interaction and relaxation to minimise the total energy of the system.  相似文献   

6.
Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resources.There are two major facts behind the efforts.First, the waste magnets contain total rare-earth content as high as more than 30 wt.%, which is higher than most natural rare-earth mines.Second, the waste magnets maintain the physical and chemical properties of the original magnets even with deterioration of the properties on surfaces due to corrosion and contamination.In this review,various techniques for recycling bulk Nd–Fe–B sintered magnet wastes, the overall properties of the recycled Nd–Fe–B sintered magnets, and the mass production of recycled magnets from the wastes are reviewed.  相似文献   

7.
8.
9.
[Co/Gd0.36Co0.64]4/Co multilayers with Co termination layer have been prepared by rf sputtering. They form macroscopic ferrimagnets with a compensation temperature (Tcomp) determined by the thickness ratio of the layers. In low fields the magnetization of Co and Gd–Co layers are along the axis of the applied field. Increasing field makes the moments of both the Co and Gd–Co layers deviate from the axis of the field giving rise to a transition into a twisted state. These magnetic transitions were studied by vibrating sample magnetometer (VSM), magneto-optic Kerr effect and magnetoresistance measurements at various temperatures. The nucleation and evolution of surface- and bulk-twisted magnetic states were also observed in these multilayers.  相似文献   

10.
Site-specific nano-crystallization in an amorphous soft magnetic Fe–Si–B alloy was induced via laser processing on a magnetic substrate. The microstructure evolution was characterized using site-specific transmission electron microscopy, and the results are rationalized by diffusion-based calculations. A clear variation in grain-size and spatial distribution is observed at the center region compared with edge regions of the laser track. Additionally, the nano-crystalline phase exhibits a crystallographic texture at the edge region, whereas a random texture is obtained at the center of the laser track. The evolution of structure, size, and morphology of grains are explained by the influence of magnetic field-enhanced thermal effect on nucleation rate during crystallization.  相似文献   

11.
Interface of Ag/57Fe/Ag trilayer has been studied with a depth resolution of a fraction of a nanometer using x-ray standing waves generated by a W/Si multilayer mirror used as a substrate. Two interfaces of 38 Å thick Fe layer in Ag/57Fe/Ag trilayer are clearly resolved. It is found that the rms roughness of the two interfaces Fe-on-Ag and Ag-on-Fe are 10 ± 1.0 and 6 ± 1.0 Å, respectively. Conversion electron Mössbauer spectroscopy (CEMS) has been used to get information about the volume fraction of the intermixed region and the estimated roughness from the relative area of the two sextets of CEMS spectra is found to be 7.0 Å which is consistent with the average roughness obtained by X-ray fluorescence measurements. However, the asymmetry of the interfaces can not be inferred from CEMS measurements.  相似文献   

12.
《Physica B: Condensed Matter》2000,275(1-3):248-252
The energetic model of ferromagnetic hysteresis calculates the magnetic state of materials by minimizing the total energy function for statistical domain behavior. The approach shows good agreement with the magnetization curves of mechanically alloyed Pr9Fe85B6 powder, heat treated at different temperatures.  相似文献   

13.
Russian Physics Journal - Using a simultaneous electrical explosion of two twisted wires, bimetallic Ti–Ag and Fe–Ag nanoparticles are synthesized, where the component ratios are...  相似文献   

14.
Magnetic and magnetotransport measurements were performed on gas-phase synthesized Fe nanoparticles subjected to surface oxidation and cold consolidation. Two samples were investigated with α-Fe volume fraction of 0.15 and 0.60. The sample with smaller metallic fraction is below the percolation threshold for metallic conduction and the conduction mechanism is dominated by thermally activated processes across the oxide. In this case, by lowering the temperature, an increase of the negative magnetoresistance is observed up to 5% at 50 K in a magnetic field of 70 kOe. The magnetoresistance dependence on the sample magnetization, temperature and sample composition is discussed considering the magnetic correlations present in these nanostrucuterd systems.  相似文献   

15.
16.
The role of deformation-induced defects and carbon addition on copper precipitation during ageing at 550?°C is investigated in high-purity Fe–Cu–B–N–C alloy samples by positron annihilation spectroscopy. Complementary small-angle neutron scattering (SANS) and hardness tests are utilized to characterize the size distribution of the Cu precipitates formed and their influence on the mechanical properties. Samples with 0 and 8% cold pre-strain are utilized to study the influence of prior tensile deformation on the precipitation kinetics of copper. The time evolution of the coincidence Doppler-broadening spectra indicates that deformation-induced defects enhance the Cu precipitation kinetics, which is confirmed by the SANS results. In the S–W plot, a clear reduction in open volume defects is accompanied by a strong increase of Cu signature during the initial stage of ageing, implying that the open volume defects (mainly dislocations) act as nucleation sites for Cu precipitation. A comparison between the precipitation behaviour of Fe–Cu, Fe–Cu–B–N and Fe–Cu–B–N–C indicates that the addition of carbon does not alter the Cu precipitation mechanism but decelerates the kinetics. Hardness results confirm that carbon counteracts the acceleration of Cu precipitation caused by the addition of B and N.  相似文献   

17.
Loss-induced optical Bloch waves are investigated in a metal–dielectric semi-infinite multilayer placed over a substrate. In addition to the well-known classification of the electromagnetic waves into forward and backward waves, the electrostatics-based sub-classification elucidates one-level finer details of the wave nature. For this purpose, a hypothetical process is devised by continuously varying the signal velocity. As a result, a given electromagnetic wave turns out to be related to a certain electrostatic state. By this way, the metal's material loss is found to play an essential role in inducing depthwise energy flows, although it has the usual detrimental role in wave attenuation. Depending on the wave direction, normal and inverted reflection peaks on resonant excitations are illustrated.  相似文献   

18.
The effects of oxidation of Dy H3 with respect to dysprosium addition to Nd–Fe–B sintered magnets are examined.Samples sintered with the addition of freshly milled dysprosium hydride, dysprosium hydride exposed to air at room temperature for 15 min and dysprosium hydride exposed to air at 100°C for 3.5 hours are studied from the aspects of magnetic properties, microstructures, and their degradation, respectively. It is found that some oxidized dysprosium is distributed in the Nd-rich phase; hence, the decrease of remanence occurred. The degradation results indicate that preoxidised dysprosium can be a major factor in increasing the corrosion rate. The microstructures and corrosion acceleration test suggested that the oxidation is detrimental to remanence.  相似文献   

19.
RE2Fe14B (RE=rare earth) materials are capable of absorbing hydrogen to form a stable solid solution at room temperature. Hydrogenation produces a number of significant changes in the hyperfine interactions. In this work, 57Fe Mössbauer effect spectroscopy and X-ray diffraction measurements were performed on Nd14.01Hf0.08Fe78.91B7.00 alloys submitted to thermal treatment in hydrogen atmosphere. A non-linear increase of the hyperfine fields and isomer shifts with hydrogen concentration was observed. The hyperfine parameters of the 8j1 site exhibit a rather different evolution than those experienced by the other major sites (8j2, 16k1, 16k2). The origin of the hyperfine field enhancement is analyzed in terms of volume expansion and H nearest neighbors to the Fe sites. A linear expression on these two effects to give account of isomer shift evolution for 8j1 site is given.  相似文献   

20.
Dekoster  J.  Degroote  S.  Meersschaut  J.  Moons  R.  Vantomme  A.  Bottyán  L.  Deák  L.  Szilágyi  E.  Nagy  D.L.  Baron  A.Q.R.  Langouche  G. 《Hyperfine Interactions》1999,120(1-8):39-48

Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Mössbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Mössbauer reflectometry. From the fits of the time spectrum and the resonant ?—? scans a model for the sublayer magnetization of the multilayer is deduced.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号