首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this work we report the magnetic and structural properties obtained by Mössbauer spectrometry, Vibrating Sample Magnetometer and X-ray diffraction of milled powders with initial composition Nd2(Fe100 ? x Nb x )14B with x = 0 and x = 4. The mixtures were ball milled for different times up to 240 h. Structural and microstructural parameters were derived from high statistics X-ray patterns and discussed as a function of milling time. The Mössbauer spectra of the samples were fitted by means of a sextet and an hyperfine field distribution, associated to a pure iron phase (α-Fe) and a disordered iron-based phase, respectively. The α-Fe grain size decreases from 50 nm for 6 h up to 5 nm for 240 h milling time. The Vibrating Sample Magnetometer results allow to conclude that these samples behave as soft ferromagnets.  相似文献   

2.
Hydrogenation effects on crystalline and magnetic structure of nanocomposites (FeCoZr) x (Al2O3)100???x , 38?≤?x?≤?63 at.% are studied by 57Fe Mössbauer spectroscopy and magnetometry. Variations of local structure, blocking temperature and mean FeCoZr nanoparticles’ volume are discussed with respect to (i) composition and (ii) two competing processes—H2 incorporation and annealing—occurred during treatment in H2 plasma.  相似文献   

3.
SnO2 powders, doped with various 57Fe contents were prepared by a sol-gel method, and annealed finally at 500 °C and 650 °C. These samples were characterized by Mössbauer spectroscopy, vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to investigate the relationship of magnetic properties, grain sizes, annealing temperatures and Mössbauer parameters. The particle sizes of SnO2 powders reduced to less than 100 nm with the increase of Fe contents up to 5%. Rutile SnO2 was the only phase obtained for all samples. Room temperature Mössbauer spectra suggest the presence of two different paramagnetic iron sites for all samples and one magnetically relaxed species for those samples with the lowest iron concentrations. The magnetization increased with the Fe content, but was reduced for the samples annealed at 650 °C perhaps due to a segregation of α-Fe2O3 doped with tin.  相似文献   

4.
2D coordination polymer iron(II) spin crossover complexes containing 3,5-lutidine with host framework Fe(3,5-lutidine)2Ni(CN)4were synthesized. Their spin crossover properties were studied by temperature dependent 57Fe Mössbauer spectroscopy. Materials show gradual incomplete spin crossover with distinct thermochromism, while only 25 % of iron(II) ions are switched to the low spin state at 80 K, as determined by a detailed 57Fe Mössbauer study.  相似文献   

5.
Iron supported systems are frequently used as catalysts in the Fischer–Tropsch synthesis being the Fe0 the active phase for the reaction. We have studied the influence of the calcination atmosphere (air or nitrogen) on the iron oxide reducibility and the metallic iron particle size obtained in Fe/SiO2 system. We have impregnated a silicagel with Fe(NO3)3·9H2O aqueous solution and the solid obtained was calcinated in air or N2 stream. These precursors, with 5% (wt/wt) of Fe, were characterized by Mössbauer Spectroscopy at 298 and 15 K. Amorphous Fe2O3 species with 3 nm diameter in the former, and α-Fe2O3 crystals of 48 nm diameter were detected in the last one. Both precursors were reduced in H2 stream. Two catalysts were obtained and characterized by Mössbauer spectroscopy in controlled atmosphere at 298 and 15 K, CO chemisorption and volumetric oxidation. α-Fe0, Fe3O4 and Fe2+ were identified in the catalyst calcined in air. Instead, only α-Fe0 was detected in the catalyst calcined in N2. The iron metallic crystal sizes were estimated as ≈2 nm for the former and ≈29 nm for the last one. The different oxide crystal sizes, obtained from the diverse calcination atmospheres, have led to different structural properties of the reduced solids. It has been possible to reduce totally the existing iron in an Fe/SiO2 system with iron loading lower than 10% (wt/wt).  相似文献   

6.
Structural and magnetic properties of nanocrystalline Fe75???x Co x Cu1 Nb3Si15B6 (x?=?0, 2, 5) alloys are reported using magnetic measurements X-ray diffraction, Mössbauer spectroscopy. Results show that: (1) for the specimens with x?=?0 reveal that the volume fraction of the nanograins and their grain diameter ranges between 56% and 80% and 10 and 18 nm, (2) annealing above 700°C apart from Fe3Si type nanocrystals, magnetically hard Fe3B, Fe23B phases also appear, leading to a sharp increase of the coercive field, (3) Co content and applied stress during annealing has considerable effect on relative permeability and stress induced anisotropy, which is perpendicular to the ribbon axis, Mössbauer spectroscopy also suggests changes in spin texture.  相似文献   

7.
Iron and iron–cobalt nanostructures that were synthesized in polymer ion-track membranes have been studied via Mössbauer spectroscopy combined with raster electron microscopy, energy-dispersion analysis, and X-ray diffraction data. The obtained nanostructures are single-phase bcc Fe1–xCox nanotubes with a high degree of polycrystallinity, whose length is 12 μm; their diameter is 110 ± 3 nm and the wall thickness is 21 ± 2 nm. Fe2+ and Fe3+ cations were detected in the nanotubes, which belong to iron salts that were used and formed in the electrochemical deposition. The Fe nanotubes exhibit eventual magnetic moment direction distributions of Fe atoms, whereas Fe/Co nanotubes have a partial magnetic structure along the nanotube axis with a mean value of the angle between the magnetic moment and nanotube axis of 34° ± 2°. Substituting the Fe atom with Co in the nearest environment of the Fe atom within the Fe/Co structure of nanotubes leads to a noticeable increase in the hyperfine magnetic field at the 57Fe nuclei (by 8.7 ± 0.4 kOe) and to a slight decrease in the shift of the Mössbauer line (by 0.005 ± 0.004 mm/s).  相似文献   

8.
Mössbauer investigations of zirconium alloys were examined. Data about the chemical state of iron atoms in the zirconium alloys of different composition has been provided. Mössbauer spectroscopy revealed that small quantities of iron in binary zirconium alloy are in the solid solution α-Zr (up to 0.02 wt.%). Different iron atoms concentration and thermo-mechanical treatments may lead to formation the intermetallic compounds Zr3Fe, Zr2Fe, ZrFe2. Adding tin atoms does not affect the formation and shape of Mössbauer spectra of these compounds. Adding Cr and Nb atoms makes significant changes in the shape of Mössbauer spectra and leads to the formation of complex intermetallic compounds. Adding Cu and W atoms, the shape of the binary alloys spectra (Zr-Fe) remains unchanged, but a change in the temperature dependence behavior of the spectral parameters occurs and also, changes to the properties of the alloys.  相似文献   

9.
Iron and iron–cobalt nanostructures are probed by means of Mössbauer spectroscopy combined with scanning electron microscopy, energy-dispersion analysis, and X-ray diffraction. The obtained nanostructures are single-phase Fe1 ? xCo x (0 ≤ x ≤ 1) nanotubes that have high degrees of polycrystallinity and a bcc lattice 12 μm long and 110 ± 3 nm in diameter, with walls 21 ± 2 nm thick. A random distribution of the orientations of the magnetic momenta of Fe atoms are observed for Fe nanotubes, while Fe–Co nanotubes are characterized by a magnetic texture along their axes.  相似文献   

10.
Eu0.8Sr0.2Fe x Co1?x O3?z CMR perovskites with different iron concentrations (x?=?0, 0.025, 0.075, 0.15, 0.3) were investigated by X-ray diffraction, AC magnetic susceptibility, magnetotransport, as well as 57Fe and 151Eu Mössbauer spectrometry. The valence state of europium ions was found to be trivalent, independently of the iron concentration. 57Fe Mössbauer spectra and magnetic susceptibility of the investigated perovskites presented complementary results for the magnetic transitions.  相似文献   

11.
Zirconium oxide (zirconia) exists in three crystalline forms of monoclinic, tetragonal and cubic structures at atmospheric pressures. The cubic form of zirconia is well known for its mechanical, electrochemical and optical applications. Fe-doped cubic zirconia (high temperature phase) compositions are synthesized by microwave combustion method. Here, we present a Mössbauer investigation of Zr1???x Fe x O2 composition within a range of Fe (0.03 < x < 0.09). 57Fe Mössbauer spectra were recorded at room temperature and at low temperature (77 K) for all samples. 3% Fe-doped ZrO2 shows doublet and the corresponding 6% and 9% Fe-doped ZrO2 samples show superimposed sextet and doublets. The isomer shift and quadrupole moment indicate, Iron to be in III oxidation state and to occupy different octahedral sites, associated with some amount of disorder. X-ray powder diffraction pattern of Fe-doped ZrO2 samples appear as very well crystalline. The Miller indices refer to the cubic fluorite-type ZrO2 structure. The magnetic behavior shows increase in moment and decrease in coercivity, with increase in Fe concentration. The M vs. H plots of the as-prepared Zr1-x Fe x O2 essentially show typical hysteresis loops, indicating room temperature ferromagnetism. Thus, the introduced microwave combustion route is an effective process to achieve multifunctional Fe-doped Zirconia with coexistent magnetic properties.  相似文献   

12.
The common formula of the minerals franckeite, cylindrite and potosiite is known to be w PbS × SnS2 y FeS z Sb2S3. The tin Mössbauer spectra showed the existence of two Sn(IV) and two Sn(II) species, and the iron spectra one high spin Fe(II) and two Fe(III) species. For antimony, only one Sb(III) phase is present, except in potosiite where also 20 % of Sb(V) were found. The mineralogical relationships within this group were confirmed by the Mössbauer spectroscopical results.  相似文献   

13.
Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1?xCrx and Fe1?xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1?xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.  相似文献   

14.
The Mössbauer effect measurements performed on 20Fe2O3 80 3B2O3 (1?x)PbO xGeO2 glasses show that the ratio between the number of ferrous ions to the total number of iron ions decreases by increasing the GeO2 content. The Curie constants calculated from the distribution of iron cations obtained by Mössbauer effect data are in agreement with the values determined from magnetic measurements. Finally, we discuss the influence of the glass composition and melting temperature on the iron valence states.  相似文献   

15.
States of dilute Fe in SnO2 have been monitored using 57Fe emission Mössbauer spectroscopy following implantation of 57Mn (T 1/2 = 85.4 s) in the temperature range from 143 K to 711 K. A sharp annealing stage is observed at ~330 K where the Fe3?+?/Fe2?+? ratio shows a marked increase. It is suggested that this annealing stage is due to the dissociation of Mn-VO pairs during the lifetime of 57Mn; the activation energy for this dissociation is estimated to be 0.9(1) eV. Fe3?+? is found in a paramagnetic state showing spin-lattice relaxation rates consistent with an expected T 2 dependence derived for a Raman process. In addition, a sharp lined doublet in the Mössbauer spectra is interpreted as due to recoil produced interstitial Fe.  相似文献   

16.
A Mössbauer study of nano-TiO2 doped with Fe is presented. The samples are prepared by sol-gel method, doping Fe by 5, 10 and 15 wt.%, respectively, which are measured with XRD, TEM and Raman spectra. Especially, Mössbauer spectra are emphasized in this study. The anatase phase is major in both doped and no-doped sample. The α-Fe2O3 phase is also in the doped samples. The grain size of doped sample is in 5–20 nm range, the major grains are about 13 nm. And the grain size of no-doped sample is about 8 nm. Studying Mössbauer spectra and Raman spectra, we concluded that in the doping process the Fe3+ ions entered anatase lattice and substituted Ti4+ ions. However, the amount of Fe ions in the site is limited to about 1.5 wt.%. It does not increase as the doping Fe increase. The more Fe doped, the more α-Fe2O3 formed. For comparing conveniently, it also can be described as (Ti0.98Fe0.02)O2 by atomic percent.  相似文献   

17.
Mössbauer spectra of the system Li+ xFe2+ 1?2xFe3+ x[Cr2]O4 measured at 150 K consist of one Fe(III) absorption and several Fe(II) doublets. An explanation was able by use of a statistical model of the Fe(II) environments.  相似文献   

18.
Materials of composition CaZrTi2?2x Nb x Fe x O7 with the fluorite-related zirconolite structure have been prepared. The 57Fe Mössbauer spectra show that iron is initially located in the five co-ordinate cation sites. As the iron content increases the iron enters the octahedral sites until, at a composition CaZrTi0.4Nb0.8Fe0.8O7, ca. 50% of the iron is five co-ordinate and the remainder is located in the octahedral sites.  相似文献   

19.
Iron uptake and distribution in wheat roots were studied with 57Fe Mössbauer spectroscopy. Plants were grown both in iron sufficient and in iron deficient nutrient solutions. Mössbauer spectra of the frozen iron sufficient roots exhibited three iron(III) components with the typical average Mössbauer parameters of δ?= 0.50 mm s???1, Δ?= 0.43 mm s???1, δ?= 0.50 mm s???1, Δ?= 0.75 mm s???1 and δ?= 0.50 mm s???1, Δ?= 1.20 mm s???1 at 80 K. These doublets are very similar to those obtained earlier for cucumber [0], which allows us to suppose that iron is stored in a very similar way in different plants. No ferrous iron could be identified in any case, not even in the iron deficient roots, which confirms the mechanism proposed for iron uptake in the graminaceous plants.  相似文献   

20.
Series of substituted M-type hexagonal ferrite has been synthesized, and studied by means of X-ray diffraction, IR and Mössbauer spectroscopy. The samples have the formula (BaCr x Fe12?x O19) (with x = 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0). X-ray diffraction studies prove that all samples has a single phase M-type hexagonal structure. The lattice parameters both a and c were found to be composition dependent. This observation was attributed to the atomic radii of the substituted cations. The Mössbauer spectra change from magnetically ordered (x = 0) toward magnetically ordered with strong line broadening. The broadening increases as the Cr content increase. Measurements at low temperature (80 K) restore the magnetic order. The Mössbauer parameters suggest that Cr3+ prefers to occupy the 4f2 and 2a crystal sites. IR absorption bands were observed between 1,500 and 400 cm?1, and confirm the structure in coincidence with X-ray results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号