首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic model to predict nucleation rates in the sulfuric acid-water system is presented. It allows calculating steady-state nucleation rates and the corresponding time lag, using a direct solution of a system of kinetic equations that describe the populations of sub- and near-critical clusters. This kinetic model takes into account cluster-cluster collisions and decay of clusters into smaller clusters. The model results are compared with some predictions obtained with the classical nucleation theory (CNT) and also with available measurement data obtained in smog chambers or flow tubes. It is shown that in the case of slow nucleation processes, the kinetic model and the CNT as used by Shugard et al. [J. Chem. Phys. 75, 5298 (1974)] give the same results. However, in the case of intensive nucleation, a large part of the nucleation flux is due to cluster-cluster collisions and the CNT underestimates the nucleation rates.  相似文献   

2.
Aerosol nucleation events have been observed at a variety of locations worldwide, and may have significant climatic and health implications. Binary homogeneous nucleation (BHN) of H2SO4 and H2O is the foundation of recently proposed nucleation mechanisms involving additional species such as ammonia, ions, and organic compounds, and it may dominate atmospheric nucleation under certain conditions. We have shown in previous work that H2SO4-H2O BHN can be treated as a quasi-unary nucleation (QUN) process involving H2SO4 in equilibrium with H2O vapor, and we have developed a self-consistent kinetic model for H2SO4-H2O nucleation. Here, the QUN approach is improved, and an analytical expression yielding H2SO4-H2O QUN rates is derived. Two independent measurements related to monomer hydration are used to constrain the equilibrium constants for this process, which reduces a major source of uncertainty. It is also shown that the capillarity approximation may lead to a large error in the calculated Gibbs free energy change for the evaporation of H2SO4 molecules from small H2SO4-H2O clusters, which affects the accuracy of predicted BHN nucleation rates. The improved QUN model-taking into account the recently measured energetics of small clusters-is thermodynamically more robust. Moreover, predicted QUN nucleation rates are in better agreement with available experimental data than rates calculated using classical H2SO4-H2O BHN theory.  相似文献   

3.
4.
The state and kinetic stability of tetrazaporphin (I) in acetic acid and in dimethyl sulfoxide (DMSO) in the presence of H2SO4 were investigated. Partial protonatiqn of I to give I-AcOH2 associates occurs in acetic acid. The kinetic parameters of the reaction involving the destruction of tetrazaporphin in the presence of H2SO4 in acetic acid and DMSO solutions were determined. The mechanism of the destruction is discussed.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 932–936, July, 1984.  相似文献   

5.
We show that the binary homogeneous nucleation (BHN) of H2SO4-H2O can be treated as quasi-unary nucleation of H2SO4 in equilibrium with H2O vapor. A scheme to calculate the evaporation coefficient of H2SO4 molecules from H2SO4-H2O clusters is presented and a kinetic model to simulate the quasi-unary nucleation of H2SO4-H2O is developed. In the kinetic model, the growth and evaporation of sulfuric acid clusters of various sizes are explicitly simulated. The kinetic quasi-unary nucleation model does not have two well-recognized problems associated with the classical BHN theory (violation of the mass action law and mismatch of the cluster distribution for monomers) and is appropriate for the situations where the assumption of equilibrium cluster distribution is invalid. The nucleation rates predicted with our quasi-unary kinetic model are consistent with recent experimental nucleation experiments in all the cases studied, while the most recent version of the classical BHN model systematically overpredicts the nucleation rates. The hydration of sulfuric acid clusters, which is not considered in the classical model but is accounted for implicitly in our kinetic quasi-unary model, is likely to be one of physical mechanisms that lead to lower nucleation rates. Further investigation is needed to understand exactly what cause the difference between the kinetic quasi-unary model and the classical BHN model.  相似文献   

6.
(H3O)Nd(SO4)2     
The crystal structure of oxonium neodymium bis(sulfate), (H3O)Nd(SO4)2, shows a two‐dimensional layered framework assembled from SO4 tetrahedra and NdO9 tricapped trigonal prisms. One independent sulfate group makes four S—O—Nd linkages, while the other makes five such connections to generate an unprecedented anhydrous anionic [Nd(SO4)2] layer. To achieve charge balance, H3O+ cations are inserted between adjacent layers where they participate in hydrogen‐bonding interactions with the sulfate O atoms of adjacent layers.  相似文献   

7.
8.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

9.
Differential calorimetry was used to determine the heat evolution and kinetics of hydration processes of the calciumsulphatealuminate phase Ca4(Al6O12)(SO4) with gypsum CaSO4 · 2H2O at room temperature with one mole of water added to the solid phase. An increasing content of sulphate ions in the sytem results in substitution of the monosulphate Ca4(Al2O6)(SO4) · 12H2O in the reaction products by ettringite, Ca6(Al2O6)(SO4)3 · 32H2O. Higher contents of ettringite influence the rates of hydration reactions and the values of the evolved heat.
Zusammenfassung Die Wärmeentwicklung und ihr zeitlicher Ablauf bei der Hydratation des Calciumsulfat-aluminats Ca4(Al6O12)SO4 mit Gips CaSO4 · 2H2O bei Zimmertemperatur und einem Wasser/Feststoff-Massenverhältnisw/s=1 wurde durch isotherme Differenzkalorimetrie untersucht. Bei erhöhtem Sulfatgehalt wird das Monosulfat Ca4(Al2O6)SO4 · 12H2O im Reaktionsprodukt durch Ettringit Ca6(Al2O6)(SO4)3 · 32H2O ersetzt. Der erhöhte Ettringitgehalt beeinflusst die Beschleunigung der Hydration und die abgegebene Wärmemenge.

3( l612) (SO4) . - 6(l26)(S4)3·322, .
  相似文献   

10.
By the oxidation of raesitylene by hydrogen peroxide in AcOH-Ac2O-H2SO4 one can obtain mesitol (2,4,6-trimethylphenol) (with a selectivity of 57–69% at a mesitylene conversion of 22–16% and the acetate of mesitol with a selectivity of 72–85% at 25–22% conversion. The peroxide responsible for the oxidation of mesitylene in this system is in the form of peracetic acid, formedin situ. Over the concentration range studied, the reaction is first order in AcOOH, mesitylene, and H2SO4. Hydroxylation of mesitylene by AcOOH proceeds by an electrophilic substitution mechanism, the limiting step being the formation of the -complex.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2716–2721, December, 1990.The authors express their thanks to L. V. Efremova, G. M. Maksimov, and V. D. Chinakov for their assistance in this work.  相似文献   

11.
12.
We have experimentally investigated the water and sulfuric acid-rich regions of the H2SO4/(NH4)2SO4/H2O ternary liquid/solid phase diagram using differential scanning calorimetry (DSC) and infrared spectroscopy of thin films. We present the liquid/solid ternary phase diagram for temperatures below 373 K and H2SO4 concentrations below 60 wt %. We have determined two ternary eutectics and two tributary reaction points for this system in the regions studied. It is also seen that sulfuric acid tetrahydrate (SAT) forms as a metastable solid over a large concentration range. Two true binary systems have been identified: ice/letovicite and SAT/ammonium bisulfate. Finally, we have compared our results to the predictions of the aerosol inorganics model and have found significant differences both in the final melting points and in the location of some of the phase boundaries including a significant discrepancy in the invariant points predicted versus those observed.  相似文献   

13.
14.
15.
Acidic Sulfates of Neodymium: Synthesis and Crystal Structure of (H5O2)(H3O)2Nd(SO4)3 and (H3O)2Nd(HSO4)3SO4 Light violett single crystals of (H5O2)(H3O)2 · Nd(SO4)3 are obtained by cooling of a solution prepared by dissolving neodymium oxalate in sulfuric acid (80%). According to X‐ray single crystal investigations there are H3O+ ions and H5O2+ ions present in the monoclinic structure (P21/n, Z = 4, a = 1159.9(4), b = 710.9(3), c = 1594.7(6) pm, β = 96.75(4)°, Rall = 0.0260). Nd3+ is nine‐coordinate by oxygen atoms. The same coordination number is found for Nd3+ in the crystal structure of (H3O)2Nd(HSO4)3SO4 (triclinic, P1, Z = 2, a = 910.0(1), b = 940.3(1), c = 952.6(1) pm, α = 100.14(1)°, β = 112.35(1)°, γ = 105.01(1)°, Rall = 0.0283). The compound has been prepared by the reaction of Nd2O3 with chlorosulfonic acid in the presence of air. In the crystal structure both sulfate and hydrogensulfate groups occur. In both compounds pronounced hydrogen bonding is observed.  相似文献   

16.
The title compound, tri­ammonium cis‐di­aqua‐cis‐dioxo‐trans‐disulfatovanadate 1.5‐hydrate, was obtained by oxidizing VIV to VV in a 2 M sulfuric acid solution of vanadyl­ sulfate and adding ammonium sulfate. Here, the V atom is sandwiched by two sulfate groups by corner‐sharing to form a discrete [VO2(SO4)2(OH2)2]3? anion. The water mol­ecules occupy cis positions in the equatorial plane of the vanadium octahedron.  相似文献   

17.
18.
19.
20.
One of the important reactive steps in Earth's atmosphere is the decomposition of H(2)SO(4) to H(2)O and SO(3). However, because the UV spectrum of H(2)SO(4) was not found up to 140 nm, alternative mechanisms, including vibrationally induced dissociation, were proposed. Using adiabatic reactive molecular dynamics (ARMD) simulations with validated force fields for the product and educt channels, it is shown through explicit atomistic simulation that by exciting the ν(9) (OH-stretching-) mode, photodissociation can occur on the picosecond time scale. With the potential energy surfaces used in the present work, ν(9) = 4 is sufficient for this process. From a statistically significant number of trajectories (several thousands), vibrationally induced dissociation times are found to follow Gamma-distributions with most likely reaction times between 40 and 200 ps by depositing energies ranging from 40 to 60 kcal/mol, corresponding to 4 and 6 vibrational quanta in the OH stretching vibration. Because ARMD simulations allow multiple and long-time simulations, both nonstatistical, impulsive H-transfer and statistical, IVR-regimes of the decomposition reaction can be discussed in detail at an atomistic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号