首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-valent bis(oxo)-bridged dimanganese(IV) complexes with the series of binucleating 4,5-X2-o-phenylenebis(oxamate) ligands (opbaX2; X = H, Cl, Me) (1a–c) have been synthesized and characterized structurally, spectroscopically and magnetically. Complexes 1a–c possess unique Mn2(μ-O)2 core structures with two o-phenylenediamidate type additional bridges which lead to exceptionally short Mn–Mn distances (2.63–2.65 Å) and fairly bent Mn–O–Mn angles (94.1°–94.6°). The cyclovoltammograms of 1a–c in acetonitrile (25 °C, 0.1 M Bu4NPF6) show an irreversible one-electron oxidation peak at moderately high anodic potentials (Eap = 0.50–0.85 V versus SCE), while no reductions are observed in the potential range studied (down to −2.0 V versus SCE). These dinuclear manganese oxamate complexes are excellent catalysts for the aerobic oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone in acetonitrile at 25 °C. The order of increasing catecholase activity (kobs) with the electron donor character of the ligand substituents as 1b (X = Cl) < 1a (X = H) < 1c (X = Me) correlates with Hammett σ+ values (ρ = −0.95). A mechanism involving initial activation of the catechol substrate by coordination to the dimetal center and subsequent oxidation to quinone by O2 is proposed, which is consistent with the observed saturation kinetics.  相似文献   

2.
The electronic and geometrical structures of the low-energy states of 1,4,5,8-naphthalenetetracarboxylic dianhydride parent diimide (1) are studied in terms of the complete active space self-consistent field (CASSCF) method employed at different level with respect to the size and the quality of the active space. In the framework of the vibronic model based on the Franck–Condon (FC) effect the absorption and magnetic circular dichroism (MCD) spectra are studied in the excitation region corresponding to two low-energy 11Ag → 11B2u and 11Ag → 11B3u electronic transitions in diimides. In that (visible) excitation region the CASSCF computations with the 5π[4n]5π active space (i.e., the naphthalene-like π orbitals enriched by the four lone pair orbitals of the oxygen atoms) were found to reproduce very well the empirical absorption and the MCD spectra measured for the dicyclohexyl-N,N-substituted diimide (2). At the same CASSCF/5π[4n]5π level, the electronic absorption of diimides in the near UV excitation region were attributed to the 11Ag → 21B1u, 11Ag → 21B3u and 11Ag → 21B2u electronic transitions; the latter two are mostly localized on the “diimide chromophore”. For these transitions the calculated magneto-optical characteristics, such as sign pattern and intensity distribution in the MCD spectrum, were found to be consistent with that experimentally observed for the diimide 2 compound.  相似文献   

3.
A series of luminescent rhenium(I) monoynyl complexes, [Re(N---N)(CO)3(CC---R)] (N---N=bpy, tBu2bpy; R=C6H5, C6H4---Cl-4, C6H4---OCH3-4, C6H4---C8H17-4, C6H4---C6H5, C8H17, C4H3S, C4H2S---C4H3S, C5H4N), together with their homo- and hetero-metallic binuclear complexes, {Re(N---N)(CO)3(CC---C5H4N)[M]} (N---N=bpy, tBu2bpy; [M]=[Re{(CF3)2-bpy}(CO)3]ClO4, [Re(NO2-phen)(CO)3]ClO4, W(CO)5) have been synthesized and their electrochemical and photoluminescence behaviors determined. The structural characterization and electronic structures of selected complexes have also been studied. The luminescence origin of the rhenium(I) alkynyl complexes has been assigned as derived states of a [dπ(Re)→π*(N---N)] metal-to-ligand charge transfer (MLCT) origin mixed with a [π(CCR)→π*(N---N)] ligand-to-ligand charge transfer (LLCT) character. The assignments are further supported by extended Hückel molecular orbital (EHMO) calculations, which show that the LUMO mainly consists of π*(N---N) character while the HOMO is dominated by the antibonding character of the Re---CCR moiety resulted from the overlap of the dπ(Re) and π(CCR) orbitals.  相似文献   

4.
Pulse radiolysis technique has been employed to study the reactions of oxidizing (OH, N3) and reducing radicals (eaq, CO2√−, acetone ketyl radical) with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) at different pH. Hydroxyl radicals react mostly by addition reaction forming radical adducts (λmax=420 nm) and the oxidation is only a minor process even in the alkaline region. The reaction with azide radicals produced phenoxyl radicals (λmax=340 nm), which are formed on fast deprotonation of solute radical cation. Using PMZ√+/PMZ and ABTS√−/ABTS2− as the reference couple, different methods are employed to determine the one-electron reduction potential of o-vanillin and the average value is estimated to be 1.076±0.004 V vs. NHE at pH 6. The phenoxyl radicals of o-vanillin were able to oxidize ABTS2− quantitatively. The eaq is observed to react with o-vanillin with rate constant value of 2×1010 dm3 mol−1 s−1. CO2√− and acetone ketyl radical are also observed to react with o-vanillin by electron transfer mechanism and showed the formation of transient absorption bands with λmax at 350 and 390 nm at pH 4.5 and 9.7, respectively. The pKa of the one-electron reduced species was determined to be 8.1. The results indicate that the aldehydic group is the most preferred site for electron addition.  相似文献   

5.
The new iodoammonium salts o-C6H4(NH2)2I+I (1) and o-C6H4(NH2)2I+ AsF6 (2) were prepared by reaction of o-phenylene diamine with I2 or I3+AsF6, respectively. Compound 1 reacts with AlI3 yielding quantitatively the corresponding tetraiodoaluminate o-C6H4(NH2)2I+AlI4 (3). The species were characterized by chemical analysis, vibrational (IR and Raman) and temperature-dependent 1H NMR spectropscopy. Direct evidence for a N---I bond was found in the Raman spectra of 1, 2 and 3 (ν(NI) = 599–600 cm−1).  相似文献   

6.
Mechanisms of RN3 (R=CH3, CH3CH2, (CH3)2CH, (CH3)3C) dissociations are proposed based on CAS, MP2 and B3LYP methods. The energy gaps between the ground-state reactants RN3 and the intersystem crossing (ISC) points are only a little lower than respective potential energy barriers of the spin-allowed reactions, 1RN3 → 1RN + 1N2. The ISC point, therefore, is considered as a transition state of the spin-forbidden reactions, 1RN3 → 3RN + 1N2. The methods of IRC and topological analysis of electron density are used to explain and predict the thermal dissociation pathways of the reactions studied.  相似文献   

7.
The complex W(NPh)Cl2[o-(NSiMe3)2C6H4] 3 was synthesized from PhN = WCl4 · OEt2 and N,N′-(Li2[o-(NSiMe3)2C6H4] and reacts with Lewis bases to form the adducts W(NPh)Cl2[o-(NSiMe3)2C6H4](L) (L = PMe3, THF, 3-picoline, tBuNC, MeCN) 4a–e. Crystals of 4a are triclinic, space group P1¯, with a = 9.562(1), b = 10.277(1), c = 14.920(2) Å, = 82.15(1), β = 80.18(1), γ = 80.41(1)°, and Z = 2. The structure was solved by the heavy atom method and refined to R = 0.0408 for 4224 observed (I > 2σ(I)) reflections. The dialkyl complexes W(NPh)R2[o-(NSiMe3)2C6H4] (R = Me, Et, CH2Ph, CH2CMe3, CH2CMe2Ph) 5–9 are formed through subsequent reactions of 3 with the corresponding Grignard reagent. Crystals of complex 5 are monoclinic, space group P2(1)/n, with a = 10.3545(2), b = 17.9669(1), c = 13.3168(1) Å, β = 103.826(1)°, and Z = 4. The structure of complex 5 was solved by direct methods in SHELXTL5 and refined to R = 0.0247 for 4572 observed reflections. Compound 5 has a square pyramidal geometry in which the imido ligand occupies the apical position and reacts with PMe3 to form the adduct W(NPh)Me2[o-(NSiMe3)2C6H4](PMe3) 5a. Crystals of complex 5a are monoclinic, space group C2/m, with a = 13.5336(1), b = 14.4291(1), c = 15.3785(1) Å, β = 110.365(1)°, and Z = 4. The structure of compound 5a was solved by direct methods in shelxtl5 and refined to R = 0.0272 for 3057 observed reflections. Crystals of the bis-neopentyl complex 8 are monoclinic, space group P2(1)/n, with a = 10.6992(4), b = 18.3144(7), c = 16.0726(6) Å, β = 92.042(1)°, and Z = 4. The structure of 8 was solved by direct methods in shelxtl5 and refined to R = 0.0261 for 5881 observed reflections. Complex 8 has a trigonal bipyramidal geometry with both neopentyl groups and one amido nitrogen in the equatorial plane.  相似文献   

8.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   


9.
The collisional behaviour of Ba[6s5d(3DJ)], 1.151 eV above the 6s2(1S0) electronic ground state, in the presence of atomic strontium, has been investigated in the ‘long-time domain' (ca. 100 μs–1 ms) following the pulsed dye-laser excitation of barium vapour at elevated temperature at λ = 553.5 nm (Ba[6s6p(1P1)] ← Ba[6s2(1S0)]. Ba(3DJ) is subsequently produced from the short-lived 1P1 state (τe = 8.37 ± 0.38 ns) by a number of radiative and collisional processes. It may then be monitored in the ‘long-time domain' by atomic spectroscopic marker methods involving either collisional activation of Ba(3DJ) by Ba(1S0) and He buffer gas to yield Ba[6s6p(3PJ)] with subsequent emission from the 3P1 state (τe = 1.2 ± 0.1 μs): Ba[6s6p(3P1)] → Ba[6s2(1S0)] + hv (λ = 791.1 nm). Alternatively, emission from Ba(1P1) may be monitored at long times following the generation of this short-lived state by energy pooling following self-annihilation of Ba(3DJ) + Ba(3DJ) from Ba[6s6p(1P1)] → Ba[6s2(1S0)] + hv (λ = 553.5 nm). The generation of Ba(3DJ) in the presence of atomic strontium yields emission in the long-time domain from Sr[5s5p(3P1)] (τe = 19.6 μs): Sr[5s5p(3P1)] → Sr[5s2(1S0)]  + hv (λ = 689.3 nm). Whilst the decay profiles at short times are complex in form, at long times all these atomic profiles show first-order kinetic removal with the decay coefficients for λ = 791.1 nm, 689.3 nm and 553.5 nm emissions in the ratio 1 : 2 : 2, consistent with overall third-order activation of the form: Ba(3DJ) + Ba(3DJ) + Sr(1S0) → Sr(3PJ) + 2Ba(1S0). The mechanism is modelled in detail, including measurement of integrated emission intensities, yielding kinetic data for fundamental collisional processes. The overall rate constant for the third-order collisional activation of Sr[5s5p(3PJ])from 2Ba[6s5d(3DJ)] + Sr[5s2(1S0)] takes the upper limit of 5.8 × 10−27 cm6 atom−2 s−1 (T = 900 K). The rate constant for the two body collisional quenching of Ba[6s5d(3DJ)] by ground state atomic strontium, Sr[5s2(1S0)], is found to be (2.0 ± 0.1) × 10−12 cm3 atom−1 s−1 (T = 900 K).  相似文献   

10.
M. Hirota  R. Hoshi 《Tetrahedron》1969,25(24):5953-5960
The PMR spectra of several methoxy substituted benzenethiols and related phenols have been examined in various solvents over a wide range of concentrations. The positions of the sulfhydryl proton resonance signals (δSH) of o-methoxybenzenethiol and 2,6-dimethoxybenzenethiol in inert solvents, and the δSH values of the thiols carrying o-OMe groups are less affected by the interaction with the solvents than those without o-OMe groups. The significant differences in the behaviour of chemical shifts of these compounds have been best interpreted by the intramolecular S---HO H-bonding. Additional evidence for the intramolecular H-bonding in o-OMe substituted benzenethiols have been obtained from the IR spectroscopic data.  相似文献   

11.
Polytetrafluoroethylene samples having different morphology were prepared by radiation induced cross-linking and degradation, and positron annihilation lifetimes were measured to extract information about the vacancy structure from the orth-positronium (o-Ps) component. The o-Ps intensity I3 was inversely correlated with the crystallinity confirming that this component is associated with the amorphous part. The o-Ps lifetime τ3 was distinctly different depending on the phase of the polymer. Below the γ relaxation temperature, the vacancies produced by degradation could be seen from an increase in the τ3 value, but at temperatures between the γ and β relaxations such vacancies became invisible due to the activated segment motion. And above the β relaxation temperature vacancies in the interface between crystalline and amorphous parts appear to affect τ3. The o-Ps intensity did not show stable reproducible results. Accumulation of positive charge can be responsible for it. The results, not only unveiling the not yet well understood behavior of the o-Ps component, demonstrate the uniqueness of the vacancy spectroscopy using o-Ps as a probe.  相似文献   

12.
The Fourier transform infrared spectra of the H-bonded complexes between HCl and 4-aminopyridine, 4-aminopyrimidine, 4-hydroxypyridine, 2-hydroxypyridine, benzimidazole and purine were investigated in Ar matrices. From the analysis of these spectra, the H-bonds N HCl appear to be of the pseudosymmetric type II for 4-aminopyridine, 4-aminopyrimidine and 4-hydroxypyridine, while benzimidazole forms a slightly weaker complex. H-bonding of HCl with the bases 2-hydroxypyridine and purine is of the intermediate type I → II. In the case of 4-aminopyrimidine, additional bonding of the Cl atom of HCl to an amino N---H bond yields a closed complex which explains the type II behaviour. In all other cases, bonding of additional HCl molecules to the 1:1 complexes results in proton transfer towards N---H+…Cl(HCl)π species, but n is much lower for type II than for the intermediate type I → II complexes. The results allow us to investigate the vibration correlation diagram and the isotopic ratio ν(HCl)/ν(DCl) for B - HCl complexes in Ar matrices into more detail.  相似文献   

13.
The 60-electron tetrahedral clusters W2Ir2(μ-L)(CO)85-C5H4Me)2 [L=dppe (2), dppf (3)] have been prepared from reaction between W2Ir2(CO)105-C5H4Me)2 (1) and the corresponding diphosphine in 52 and 66% yields, respectively. A structural study of 2 reveals that three edges of a WIr2 face are spanned by bridging carbonyls, that the iridium-ligated diphosphine coordinates diaxially and that the tungsten-bound methylcyclopentadienyls coordinate axially and apically with respect to the plane of bridging carbonyls. A structural study of 3 reveals that the dppf ligand bridges an Ir---Ir bond which is also spanned by a bridging carbonyl; tungsten-ligated methylcyclopentadienyl ligands and terminal carbonyls result in electronic asymmetry (17e and 19e iridium atoms) in the electron-precise cluster. Both clusters show two reversible one-electron oxidation processes and an irreversible two-electron reduction; the dppf-containing cluster 3 has a further, irreversible, one-electron oxidation process. UV–vis-NIR spectroelectrochemical studies of the 2→2+→22+ progression reveal the appearance of a low-energy transition on oxidation to 2+ which persists on further oxidation to 22+.  相似文献   

14.
The reaction of RuII(PPh3)3X2 (X = Cl, Br) with o-(OH)C6H4C(H)=N-CH2C6H5 (HL) under aerobic conditions affords RuII(L)2(PPh3)2, 1, in which both the ligands (L) are bound to the metal center at the phenolic oxygen (deprotonated) and azomethine nitrogen and RuIII(L1)(L2)(PPh3), 2, in which one L is in bidentate N,O form like in complex 1 and the other ligand is in tridentate C,N,O mode where cyclometallation takes place from the ortho carbon atom (deprotonated) of the benzyl amine fragment. The complex 1 is unstable in solution, and undergoes spontaneous oxidative internal transformation to complex 2. In solid state upon heating, 1 initially converts to 2 quantitatively and further heating causes the rearrangement of complex 2 to the stable RuL3 complex. The presence of symmetry in the diamagnetic, electrically neutral complex 1 is confirmed by 1H and 31P NMR spectroscopy. It exhibits an RuII → L, MLCT transition at 460 nm and a ligand based transition at 340 nm. The complex 1 undergoes quasi-reversible ruthenium(II)—ruthenium(III) oxidation at 1.27V vs. SCE. The one-electron paramagnetic cyclometallated ruthenium(III) complex 2 displays an L → RuIII, LMCT transition at 658 nm. The ligand based transition is observed to take place at 343 nm. The complex 2 shows reversible ruthenium(III)—ruthenium(IV) oxidation at 0.875V and irreversible ruthenium(III)—ruthenium(II) reduction at −0.68V vs. SCE. It exhibits a rhombic EPR spectrum, that has been analysed to furnish values of axial (6560 cm−1) and rhombic (5630 cm−1) distortion parameters as well as the energies of the two expected ligand field transitions (3877 cm−1 and 9540 cm−1) within the t2 shell. One of the transitions has been experimentally observed in the predicted region (9090 cm−1). The first order rate constants at different temperatures and the activation parameter ΔH#S# values of the conversion process of 1 → 2 have been determined spectrophotometrically in chloroform solution.  相似文献   

15.
The reaction of 1,2-bis(diphenylthioylphosphino)hydrazine (L) with copper(I) and mercury(II) halides affords the complexes, [{CuLX}2] (X = I, Br or Cl), [HgLX2] (X = Cl or Br) and the tetrametallic complex, [{L(HgI2)2}2]. Single crystal X-ray structures have been performed on the uncoordinated ligand, L, as well as the complexes [{CuLX}2] (X = I, Br and Cl), [HgLBr2] and [{L(HgI2)2}2. The molecules of L exist as dimers as a result of pairs of N–HS hydrogen bonds. The copper(I) complexes are centrosymmetric dimetallic species, the two copper atoms being bridged by L and the X atoms. In all cases the coordination sphere around the Cu atoms is approximately trigonal pyramidal with an ‘S2X2’ donor set. The complex, [HgLBr2], is a distorted tetrahedral monomer with an ‘S2Br2’ donor set and L acting as a bidentate thus forming a seven-membered chelate ring. The tetramercury iodo complex, [{L(HgI2)2}2], contains two ‘L(HgI2)2’ units linked centrosymmetrically via an I atom from each moiety. The geometry around the Hg atoms is distorted tetrahedral. The influence of hydrogen bonding between the hydrazine backbone hydrogens of L and the coordinated halide ions in for the structures of the metal complexes is discussed.  相似文献   

16.
Crystallographic studies of (2:1) salts of picric acid with 1,5-diamino-3-oxapentane (1OPICR), 1,8-diamino-3,6-dioxaoctane (2OPICR) and 1,5-diamino-3-azapentane (1NPICR) showed significant conformational change of the picrate ion due to numerous electrostatic, H-bonding and π–π stacking interactions present in the crystal lattice. In particular, intermolecular N–HO H-bonds were found to cause significant twisting of the o-NO2 groups from the plane of the benzene ring, whereas overlapping of the picrate ions due to electrostatic interactions and π–π stacking caused flattening of the molecule. Analysis of the geometry of 74 picrate ions found in the Cambridge Crystallographic Database, in their various crystallochemical environments, showed that competition between essentially weak but numerous intermolecular interactions of different types led to systematic changes in geometric parameters within the picrate ion. In particular, relations found between the C1–C2–N–O (C1–C6–N–O) torsion angle and the endocyclic C1–C2–C3 (C1–C6–C5) valence angle can be explained on the basis of competition between resonance effects of the o-NO2 group and π–π stacking.  相似文献   

17.
Polycrystalline octa-nuclear copper(I) O,O′-di-i-propyl- and O,O′-di-i-amyldithiophosphate cluster compounds, {Cu8[S2P(OR)2]68-S)} where R = iPr and iAm, were synthesized and characterized by 31P CP/MAS NMR at 8.46 T and static 65Cu NMR at multiple magnetic field strengths (7.05, 9.4 and 14.1 T). The symmetries of the electronic environments around the P sites were estimated from the 31P chemical shift anisotropy (CSA) parameters, δaniso and η. Analyses of the 65Cu chemical shift and quadrupolar splitting parameters for these compounds are presented with the data being compared to those for the analogous octa-nuclear cluster compounds with R = nBu and iBu. The 65Cu transverse relaxation for the copper sites in {Cu8[S2P(OiPr)2]68-S)} and {Cu8[S2P(OiAm)2]68-S)} was found to be very different, with a relaxation time, T2, of 590 μs (Gaussian) and 90 μs (exponential), respectively. The structures of {Cu4[S2P(OiPr)2]4} and {Cu8[S2P(OiPr)2]68-S)} cluster compounds in the liquid- and the solid-state were studied by Cu K-edge EXAFS. The disulfide, [S2P(OiAm)2]2, was obtained and characterized by 31P{1H} NMR. The interactions of the disulfide and of the potassium O,O′-di-i-amyldithiophosphate salt with the surfaces of synthetic chalcocite (Cu2S) were probed using solid-state 31P NMR spectroscopy and only the presence of copper(I) dithiophosphate species with the {Cu8[S2P(OiAm)2]68-S)} structure was observed.  相似文献   

18.
Microdifferential thermal analysis (μ-DTA), X-ray diffraction (XRD) and infrared (IR) spectroscopy were used for the first time to investigate the liquidus and solidus relations in the KPO3–Y(PO3)3 system. The only compound observed within the system was KY(PO3)4 melting incongruently at 1033 K. An eutectic appears at 13.5 mol% Y(PO3)3 at 935 K, the peritectic occurs at 1033 K and the phase transition for potassium polyphosphate KPO3 was observed at 725 K. Three monoclinic allotropic phases of the single crystals were obtained. KY(PO3)4 polyphosphate has the P21 space group with lattice parameters: a=7.183(4) Å, b=8.351(6) Å, c=7.983(3) Å, β=91.75(3)° and Z=2 is isostructural with KNd(PO3)4. The second allotropic form of KY(PO3)4 belongs to the P21/n space group with lattice parameters: a=10.835(3) Å, b=9.003(2) Å, c=10.314(1) Å, β=106.09(7)° and Z=4 and is isostructural with TlNd(PO3)4. The IR absorption spectra of the two forms show a chain polyphosphates structure. The last modification of KYP4O12 crystallizes in the C2/c space group with lattice parameters: a=7.825(3) Å, b=12.537(4) Å, c=10.584(2) Å, β=110.22(7)° and Z=4 is isostructural with RbNdP4O12 and contains cyclic anions. The methods of chemical preparations, the determination of crystallographic data and IR spectra for these compounds are reported.  相似文献   

19.
The ground-state and low-lying excited electronic states in mononuclear, {H2B[3,5-(CF3)2Pz]2M(2,4,6-Cn)} (M1) and dinuclear {[3,5-(CF3)2Pz]M(2,4,6-Cn)}2, (M2) (Pz = pyrazole, Cn = collidine and M = Cu, Ag), are studied using DFT approach. Electronic properties are calculated using B3LYP, while excited singlet and triplet-states are examined using TD-B3LYP. All the calculated low-lying transitions are categorized as 1MLCT transitions. A good agreement was found between experimental spectra and predicted emission wavelengths (λem), the corresponding emissive states being assigned as 3MLCT for Cu1 and Ag2, 3MLLCT for Ag1 and 3LLCT for Cu2.  相似文献   

20.
The reactions of η5-Cp*M(CO)3Na (M = Mo, W) with ,′-p-, m- and o-dichloro-xylenes yielded p-, m- and o-xylyl bridged dinuclear complexes of η5-Cp*M(CO)3 in high yields. All of such new complexes are stable to air and water, even stable in dilute acids and bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号