首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We investigate Lie symmetries of Einstein’s vacuum equations in N dimensions, with a cosmological term. For this purpose, we first write down the second prolongation of the symmetry generating vector fields, and compute its action on Einstein’s equations. Instead of setting to zero the coefficients of all independent partial derivatives (which involves a very complicated substitution of Einstein’s equations), we set to zero the coefficients of derivatives that do not appear in Einstein’s equations. This considerably constrains the coefficients of symmetry generating vector fields. Using the Lie algebra property of generators of symmetries and the fact that general coordinate transformations are symmetries of Einstein’s equations, we are then able to obtain all the Lie symmetries. The method we have used can likely be applied to other types of equations.  相似文献   

2.
Abstract

Infinite-dimensional algebra of all infinitesimal transformations of solutions of the self-dual Yang-Mills equations is described. It contains as subalgebras the infinite-dimensional algebras of hidden symmetries related to gauge and conformal transformations.  相似文献   

3.
Abstract

The singular manifold expansion of Weiss, Tabor and Carnevale [1] has been successfully applied to integrable ordinary and partial differential equations. They yield information such as Lax pairs, Bäcklund transformations, symmetries, recursion operators, pole dynamics, and special solutions. On the other hand, several recent developments have made the application of group theory to the solution of the differential equations more powerful then ever. More recently, Gibbon et. al. [2] revealed interrelations between the Painlevè property and Hirota’s bilinear method. And W. Strampp [3] hase shown that symmetries and recursion operators for an integrable nonlinear partial differential equation can be obtained from the Painlevè expansion. In this paper, it has been shown that the Hirota–Satsuma equation passes the Painlevé test given by Weiss et al. for nonlinear partial differential equations. Furthermore, the data obtained by the truncation technique is used to obtain the symmetries, recursion operators, some analytical solutions of the Hirota–Satsuma equation.  相似文献   

4.
We report triangular auto-Bäcklund transformations for the solutions of a fifth-order evolution equation, which is a constraint for an invariance condition of the Kaup–Kupershmidt equation derived by E. G. Reyes in his paper titled "Nonlocal symmetries and the Kaup–Kupershmidt equation" [J. Math. Phys. 46 (2005) 073507, 19 pp.]. These auto-Bäcklund transformations can then be applied to generate solutions of the Kaup–Kupershmidt equation. We show that triangular auto-Bäcklund transformations result from a systematic multipotentialization of the Kupershmidt equation.  相似文献   

5.
We propose a rigorous definition of the generalized infinitesimal symmetries using the notion of k-vector fields, and we derive an algorithm for their determination. We show that Bäcklund transformations between evolution equations are differential operators having prescribed symmetries.  相似文献   

6.
Abstract

We search for hidden symmetries of two-particle equations with oscillator-equivalent potential proposed by Moshinsky with collaborators. We proved that these equations admit hidden symmetries and parasupersymmetries which enable easily to find the Hamiltonian spectra using algebraic methods.  相似文献   

7.
Abstract

We study symmetries of the real Maxwell-Bloch equations. We give a Lax pair, bi-Hamiltonian formulations and we find a symplectic realization of the system. We have also constructed a hierarchy of master symmetries which is used to generate nonlinear Poisson brackets. In addition we have calculated the classical Lie point symmetries and variational symmetries.  相似文献   

8.
We have studied the different symmetric properties of the generalized Maxwell’s–Dirac equation along with their quantum properties. Applying the parity (℘), time reversal ( T\mathcal{T} ), charge conjugation (C\mathcal{C}) and their combined effect like parity time reversal (PT\mathcal{PT}), charge conjugation and parity (CP\mathcal{CP}) and CPT\mathcal{CP}T transformations to various equations of generalized fields of dyons, it is shown that the corresponding dynamical quantities and equations of dyons are invariant under these discrete symmetries.  相似文献   

9.
We have sought to work with an approach to Noether symmetry analysis which uses the properties of infinitesimal point transformations in the space-time (q, t) variable to establish the association between symmetries and conservation laws of a dynamical system. In this approach symmetries are expressed in the form of generators. We have studied the variational or Noether symmetries of two uncoupled Harmonic oscillators and two such oscillators coupled by an interaction. Both these systems can have alternative Lagrangian representations. We have studied in detail how the association between symmetries and conservation laws changes as one alters the analytic or Lagrangian representation. This analysis is carried out with a view to explicitly demonstrate that the correlation between symmetry transformation and corresponding invariant quantity depends crucially on the choice of the analytic representation. PACS 45.20.Jj, 45.20.df, 45.20.dh  相似文献   

10.
Abstract

We give ansatzes obtained from Lie symmetries of some hyperbolic equations which reduce these equations to the heat or Schrödinger equations. This enables us to construct new solutions of the hyperbolic equations using the Lie and conditional symmetries of the parabolic equations. Moreover, we note that any equation related to such a hyperbolic equation (for example the Dirac equation) also has solutions constructed from the heat and Schrödinger equations.  相似文献   

11.
康静  屈长征 《中国物理 B》2012,21(2):20301-020301
The relationship between symmetries and Gauss kernels for the Schrödinger equation iut=uxx+f(x)u is established. It is shown that if the Lie point symmetries of the equation are nontrivial, a classical integral transformations of the Gauss kernels can be obtained. Then the Gauss kernels of Schrödinger equations are derived by inverting the integral transformations. Furthermore, the relationship between Gauss kernels for two equations related by an equivalence transformation is identified.  相似文献   

12.
Abstract

We present in this paper the singular manifold method (SMM) derived from Painlevé analysis, as a helpful tool to obtain much of the characteristic features of nonlinear partial differential equations. As is well known, it provides in an algorithmic way the Lax pair and the Bäcklund transformation for the PDE under scrutiny.

Moreover, the use of singular manifold equations under homographic invariance consideration leads us to point out the connection between the SMM and so–called nonclassical symmetries as well as those obtained from direct methods. It is illustrated here by means of some examples.

We introduce at the same time a new procedure that is able to determine the Darboux transformations. In this way, we obtain as a bonus the one and two soliton solutions at the same step of the iterative process to evaluate solutions.  相似文献   

13.
Abstract

We present here the explicit parametric solutions of second order differential equations invariant under time translation and rescaling and third order differential equations invariant under time translation and the two homogeneity symmetries. The computation of first integrals gives in the most general case, the parametric form of the general solution. For some polynomial functions we obtain a time parametrisation quadrature which can be solved in terms of “known” functions.  相似文献   

14.
We show that the so-called hidden potential symmetries considered in a recent paper [M.L. Gandarias, New potential symmetries for some evolution equations, Physica A 387 (2008) 2234-2242] are ordinary potential symmetries that can be obtained using the method introduced by Bluman and collaborators [G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, New York, 1989; G.W. Bluman, G.J. Reid, S. Kumei, New classes of symmetries for partial differential equations, J. Math. Phys. 29 (1988) 806-811]. In fact, these are simplest potential symmetries associated with potential systems which are constructed with single conservation laws having no constant characteristics. Furthermore we classify the conservation laws for classes of porous medium equations, and then using the corresponding conserved (potential) systems we search for potential symmetries. This is the approach one needs to adopt in order to determine the complete list of potential symmetries. The provenance of potential symmetries is explained for the porous medium equations by using potential equivalence transformations. Point and potential equivalence transformations are also applied to deriving new results on potential symmetries and corresponding invariant solutions from known ones. In particular, in this way the potential systems, potential conservation laws and potential symmetries of linearizable equations from the classes of differential equations under consideration are exhaustively described. Infinite series of infinite-dimensional algebras of potential symmetries are constructed for such equations.  相似文献   

15.
Symmetries of spacetime manifolds which are given by Killing vectors are compared with the symmetries of the Lagrangians of the respective spacetimes. We find the point generators of the one parameter Lie groups of transformations that leave invariant the action integral corresponding to the Lagrangian (Noether symmetries). In the examples considered, it is shown that the Noether symmetries obtained by considering the Larangians provide additional symmetries which are not provided by the Killing vectors. It is conjectured that these symmetries would always provide a larger Lie algebra of which the KV symmetres will form a subalgebra. PACS: 04.25.-g, 02.20.Sv, 11.30.-j  相似文献   

16.
We discuss nonlocal symmetries and nonlocal conservation laws that follow from the systematic potentialisation of evolution equations. Those are the Lie point symmetries of the auxiliary systems, also known as potential symmetries. We define higher-degree potential symmetries which then lead to nonlocal conservation laws and nonlocal transformations for the equations. We demonstrate our approach and derive second degree potential symmetries for the Burgers' hierarchy and the Calogero–Degasperis–Ibragimov–Shabat hierarchy.  相似文献   

17.
We discuss the interrelations between symmetry of an Ito stochastic differential equations (or systems thereof) and its integrability, extending in party results by R. Kozlov [J. Phys. A 43 (2010) & 44 (2011)]. Together with integrability, we also consider the relations between symmetries and reducibility of a system of SDEs to a lower dimensional one. We consider both “deterministic” symmetries and “random” ones, in the sense introduced recently by Gaeta and Spadaro [J. Math. Phys. 58 (2017)].  相似文献   

18.
We study conservation laws and potential symmetries of (systems of) differential equations applying equivalence relations generated by point transformations between the equations. A Fokker–Planck equation and the Burgers equation are considered as examples. Using reducibility of them to the one-dimensional linear heat equation, we construct complete hierarchies of local and potential conservation laws for them and describe, in some sense, all their potential symmetries. Known results on the subject are interpreted in the proposed framework. This paper is an extended comment on the paper of Mei and Zhang [Int. J. Theor. Phys. 45: 2095–2102, 2006].  相似文献   

19.
Using the wave equation in d≥1d1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated with the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics.  相似文献   

20.
In this paper we present an approach to quantum mechanical canonical transformations. Our main result is that time-dependent quantum canonical transformations can always be cast in the form of squeezing operators. We revise the main properties of these operators in regard to its Lie group properties, how two of them can be combined to yield another operator of the same class and how can also be decomposed and fragmented. In the second part of the paper we show how this procedure works extremely well for the time-dependent quantum harmonic oscillator. The issue of the systematic construction of quantum canonical transformations is also discussed along the lines of Dirac, Wigner, and Schwinger ideas and to the more recent work by Lee. The main conclusion is that the classical phase space transformation can be maintained in the operator formalism but the construction of the quantum canonical transformation is not clearly related to the classical generating function of a classical canonical transformation. We hereby propose the much more efficient method given by the squeezing operators. This method has also been proved to be very useful, by one of the authors, in the framework of the dynamical symmetries (Cerveró, J. M. (1999). International Journal of Theoretical Physics 38, 2095–2109).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号