首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We prove two characterizations of new Cohen summing bilinear operators. The first one is: Let X, Y and Z be Banach spaces, 1 < p < ∞, V : X × Y → Z a bounded linear operator and n ≥ 2 a natural number. Then V is new Cohen p-summing if and only if for all Banach spaces X1,?…?, Xn and all p-summing operators U : X1 × · · · × XnX, the operator V ? (U, IY) : X1 × · · · × Xn × YZ is -summing. The second result is: Let H be a Hilbert space,, Y, Z Banach spaces and V : H × Y → Z a bounded bilinear operator and 1 < p < ∞. Then V is new Cohen p-summing if and only if for all Banach spaces E and all p-summing operators U : EH, the operator V ? (U, IY) is (p, p*)-dominated.  相似文献   

3.
In this paper a system of differential equations y′ ? A(·,λ)y = 0 is considered on the finite interval [a,b] where λ ∈ C, A(·, λ):= λ A1+ A 0?1A?1(·,λ) and A 1,A 0, A ? 1 are n × n matrix-functions. The main assumptions: A 1 is absolutely continuous on the interval [a, b], A 0 and A - 1(·,λ) are summable on the same interval when ¦λ¦ is sufficiently large; the roots φ1(x),…,φn (x) of the characteristic equation det (φ E — A 1) = 0 are different for all x ∈ [a,b] and do not vanish; there exists some unlimited set Ω ? C on which the inequalities Re(λφ1(x)) ≤ … ≤ Re (λφn(x)) are fulfilled for all x ∈ [a,b] and for some numeration of the functions φj(x). The asymptotic formula of the exponential type for a fundamental matrix of solutions of the system is obtained for sufficiently large ¦λ¦. The remainder term of this formula has a new type dependence on properties of the coefficients A 1 (x), A o (x) and A - 1 (x).  相似文献   

4.
We study the asymptotic, long-time behavior of the energy function where {Xs : 0 ≤ s < ∞} is the standard random walk on the d-dimensional lattice Zd, 1 < α ≤ 2, and f:R+ → R+ is any nondecreasing concave function. In the special case f(x) = x, our setting represents a lattice model for the study of transverse magnetization of spins diffusing in a homogeneous, α-stable, i.i.d., random, longitudinal field {λV(x) : x ∈ Zd} with common marginal distribution, the standard α-symmetric stable distribution; the parameter λ describes the intensity of the field. Using large-deviation techniques, we show that Sc(λ α f) = limt→∞ E(t; λ f) exists. Moreover, we obtain a variational formula for this decay rate Sc. Finally, we analyze the behavior Sc(λ α f) as λ → 0 when f(x) = xβ for all 1 ≥ β > 0. Consequently, several physical conjectures with respect to lattice models of transverse magnetization are resolved by setting β = 1 in our results. We show that Sc(λ, α, 1) ≈ λα for d ≥ 3, λagr;(ln 1/λ)α−1 in d = 2, and in d = 1. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Let I = [0, 1], let Y be a real normed linear space, C a convex cone in Y and Z a real Banach space. Denote by clb(Z) the set of all nonempty, convex, closed and bounded subsets of Z. If a superposition operator N generated by a set-valued function F : I × Cclb(Z) maps the set H α (I, C) of all Hölder functions ${\varphi : I \to C}Let I = [0, 1], let Y be a real normed linear space, C a convex cone in Y and Z a real Banach space. Denote by clb(Z) the set of all nonempty, convex, closed and bounded subsets of Z. If a superposition operator N generated by a set-valued function F : I × Cclb(Z) maps the set H α (I, C) of all H?lder functions j: I ? C{\varphi : I \to C} into the set H β (I, clb(Z)) of all H?lder set-valued functions f: I ? clb(Z){\phi : I \to clb(Z)} and is uniformly continuous, then
F(x,y)=A(x,y) \text+* B(x),       x ? I, y ? CF(x,y)=A(x,y) \stackrel{*}{\text{+}} B(x),\qquad x \in I, y \in C  相似文献   

6.
We show a descent method for submodular function minimization based on an oracle for membership in base polyhedra. We assume that for any submodular function f: ?→R on a distributive lattice ?⊆2 V with ?,V∈? and f(?)=0 and for any vector xR V where V is a finite nonempty set, the membership oracle answers whether x belongs to the base polyhedron associated with f and that if the answer is NO, it also gives us a set Z∈? such that x(Z)>f(Z). Given a submodular function f, by invoking the membership oracle O(|V|2) times, the descent method finds a sequence of subsets Z 1,Z 2,···,Z k of V such that f(Z 1)>f(Z 2)>···>f(Z k )=min{f(Y) | Y∈?}, where k is O(|V|2). The method furnishes an alternative framework for submodular function minimization if combined with possible efficient membership algorithms. Received: September 9, 2001 / Accepted: October 15, 2001?Published online December 6, 2001  相似文献   

7.
We estimate the blow‐up time for the reaction diffusion equation utu+ λf(u), for the radial symmetric case, where f is a positive, increasing and convex function growing fast enough at infinity. Here λ>λ*, where λ* is the ‘extremal’ (critical) value for λ, such that there exists an ‘extremal’ weak but not a classical steady‐state solution at λ=λ* with ∥w(?, λ)∥→∞ as 0<λ→λ*?. Estimates of the blow‐up time are obtained by using comparison methods. Also an asymptotic analysis is applied when f(s)=es, for λ?λ*?1, regarding the form of the solution during blow‐up and an asymptotic estimate of blow‐up time is obtained. Finally, some numerical results are also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
《随机分析与应用》2013,31(3):491-509
Abstract

Let X 1, X 2… and B 1, B 2… be mutually independent [0, 1]-valued random variables, with EB j  = β > 0 for all j. Let Y j  = B 1 … sB j?1 X j for j ≥ 1. A complete comparison is made between the optimal stopping value V(Y 1,…,Y n ):=sup{EY τ:τ is a stopping rule for Y 1,…,Y n } and E(max 1≤jn Y j ). It is shown that the set of ordered pairs {(x, y):x = V(Y 1,…,Y n ), y = E(max 1≤jn Y j ) for some sequence Y 1,…,Y n obtained as described} is precisely the set {(x, y):0 ≤ x ≤ 1, x ≤ y ≤ Ψ n, β(x)}, where Ψ n, β(x) = [(1 ? β)n + 2β]x ? β?(n?2) x 2 if x ≤ β n?1, and Ψ n, β(x) = min j≥1{(1 ? β)jx + β j } otherwise. Sharp difference and ratio prophet inequalities are derived from this result, and an analogous comparison for infinite sequences is obtained.  相似文献   

9.
Let T(λ, ε ) = λ2 + λC + λεD + K be a perturbed quadratic matrix polynomial, where C, D, and K are n × n hermitian matrices. Let λ0 be an eigenvalue of the unperturbed matrix polynomial T(λ, 0). With the falling part of the Newton diagram of det T(λ, ε), we find the number of differentiable eigenvalues. Some results are extended to the general case L(λ, ε) = λ2 + λD(ε) + K, where D(ε) is an analytic hermitian matrix function. We show that if K is negative definite on Ker L0, 0), then every eigenvalue λ(ε) of L(λ, ε) near λ0 is analytic.  相似文献   

10.
Let Γ be a regular graph with n vertices, diameter D, and d + 1 different eigenvalues λ > λ1 > ··· > λd. In a previous paper, the authors showed that if P(λ) > n − 1, then Dd − 1, where P is the polynomial of degree d − 1 which takes alternating values ± 1 at λ1, …, λd. The graphs satisfying P(λ) = n − 1, called boundary graphs, have shown to deserve some attention because of their rich structure. This paper is devoted to the study of this case and, as a main result, it is shown that those extremal (D = d) boundary graphs where each vertex have maximum eccentricity are, in fact, 2-antipodal distance-regular graphs. The study is carried out by using a new sequence of orthogonal polynomials, whose special properties are shown to be induced by their intrinsic symmetry. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 123–140, 1998  相似文献   

11.
The linearity coefficient λ(Y) of a metric projection P Y onto a subspace Y in a Banach space X is determined. This coefficient turns out to be related to the Lipschitz norm of the operator P Y . It is proved that, for any Chebyshev subspace Y in the space C or L 1, either λ(Y) = 1 (which corresponds to the linearity of P Y ) or λ(Y) ≤ 1/2.  相似文献   

12.
Thomas Aubriot 《代数通讯》2013,41(12):3919-3936
Pour toute algèbre enveloppante quantique Uq(𝔤) de Drinfeld–Jimbo et toute famille λ = (λij)1≤i ∈ k? d'éléments inversibles du corps de base, nous construisons explicitement par générateurs et relations un objet galoisien Aλ de Uq(𝔤) et nous montrons que tout objet galoisien de Uq(𝔤) est homotope à un unique objet de la forme Aλ.

For any Drinfeld–Jimbo quantum enveloping algebra Uq(𝔤) and for any family λ = (λij)1≤i ∈ k? of invertible elements of the base field, we explicitly construct a Galois object Aλ of Uq(𝔤) by generators and relations and we prove that any Galois object of Uq(𝔤) is homotopic to a unique object of type Aλ.  相似文献   

13.
《Quaestiones Mathematicae》2013,36(4):539-545
The Padé table of 2 F 1(a, 1; c; z) is normal for c > a > 0 (cf. [4]). For mn - 1 and c ? Z-, the denominator polynomial Q mn (z) in the [m/n] Padé approximant P mn (z)/Q mn (z) for 2 F 1(a, 1; c; z) and the remainder term Q mn (z)2 F 1(a, 1; c; z)-Pmn (z) were explicitly evaluated by Padé (cf. [2], [6] or [9]). We show that for c > a > 0 and mn - 1, the poles of Pmn (z)/Qmn (z) lie on the cut (1,∞). We deduce that the sequence of approximants Pmn (z)/Qmn (z) converges to 2 F 1(a, 1; c; z) as m → ∞, n/mρ with 0 < ρ ≤ 1, uniformly on compact subsets of the unit disc |z| < 1 for c > a > 0.  相似文献   

14.
Badr Alharbi 《代数通讯》2013,41(5):1939-1966
Let ? = ??, ?1(𝔖 n ) be the Hecke algebra of the symmetric group 𝔖 n . For partitions λ and ν with ν 2 ? regular, define the Specht module S(λ) and the irreducible module D(ν). Define d λν = [S(λ): D(ν)] to be the composition multiplicity of D(ν) in S(λ). In this paper we compute the decomposition numbers d λν for all partitions of the form λ = (a, c, 1 b ) and ν 2 ? regular.  相似文献   

15.
Suppose r = (r1, …, rM), rj ? 0, γkj ? 0 integers, k = 1, 2, …, N, j = 1, 2, …, M, γk · r = ∑jγkjrj. The purpose of this paper is to study the behavior of the zeros of the function h(λ, a, r) = 1 + ∑j = 1Naje?λγj · r, where each aj is a nonzero real number. More specifically, if Z?(a, r) = closure{Re λ: h(λ, a, r) = 0}, we study the dependence of Z?(a, r) on a, r. This set is continuous in a but generally not in r. However, it is continuous in r if the components of r are rationally independent. Specific criterion to determine when 0 ? Z?(a, r) are given. Several examples illustrate the complicated nature of Z?(a, r). The results have immediate implication to the theory of stability for difference equations x(t) ? ∑k = 1MAkx(t ? rk) = 0, where x is an n-vector, since the characteristic equation has the form given by h(λ, a, r). The results give information about the preservation of stability with respect to variations in the delays. The results also are fundamental for a discussion of the dependence of solutions of neutral differential difference equations on the delays. These implications will appear elsewhere.  相似文献   

16.
Let A and B be strongly separating linear subspaces of C0(X) and C0(Y), respectively, and assume that ?A ≠ ?? (?A stands for the set of generalized peak points for A) and ?B ≠ ??. Let T: A × BC0(Z) be a bilinear isometry. Then there exist a nonempty subset Z0 of Z, a surjective continuous mapping h: Z0 → ?A × ?B and a norm‐one continuous function a: Z0K such that T (f, g)(z) = a (z)f (πx (h (z))g (πy (h (z)) for all zZ0 and every pair (f, g) ∈ A × B. These results can be applied, for example, to non‐unital function algebras (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
This paper generalizes the penalty function method of Zang-will for scalar problems to vector problems. The vector penalty function takes the form $$g(x,\lambda ) = f(x) + \lambda ^{ - 1} P(x)e,$$ wheree ?R m, with each component equal to unity;f:R nR m, represents them objective functions {f i} defined onX \( \subseteq \) R n; λ ∈R 1, λ>0;P:R nR 1 X \( \subseteq \) Z \( \subseteq \) R n,P(x)≦0, ∨xR n,P(x) = 0 ?xX. The paper studies properties of {E (Z, λ r )} for a sequence of positive {λ r } converging to 0 in relationship toE(X), whereE(Z, λ r ) is the efficient set ofZ with respect tog(·, λr) andE(X) is the efficient set ofX with respect tof. It is seen that some of Zangwill's results do not hold for the vector problem. In addition, some new results are given.  相似文献   

18.
Let Y1, Y2,… be a sequence of random variables and let Mn be the floating-point mantissa of Yn. Further let 11,x)(·) denote the indicator of the interval (1,x). If Yn/nZ a.s., where Z ≠ 0 is a further random variable, then the sequence 1(1,x)(Mn) converges a.s. to log x in the sense of ?? ∞-means and logarithmic means, respectively. The speed of convergence in this relations is estimated. As a conclusion, a further argument for Benford's law is provided.  相似文献   

19.
The purpose of this paper is to study bifurcation points of the equation T(v) = L(λ,v) + M(λ,v), (λ,v) ? Λ × D in Banach spaces, where for any fixed λ ? Λ, T, L(λ,·) are linear mappings and M(λ,·) is a nonlinear mapping of higher order, M(λ,0) = 0 for all λ ? Λ. We assume that λ is a characteristic value of the pair (T, L) such that the mapping TL(λ ,·) is Fredholm with nullity p and index s, p > s ? 0. We shall find some sufficient conditions to show that (λ ,0) is a bifurcation point of the above equation. The results obtained will be used to consider bifurcation points of the axisymmetric buckling of a thin spherical shell subjected to a uniform compressive force consisting of a pair of coupled non-linear ordinary differential equations of second order.  相似文献   

20.
Define coefficients (κλ) by Cλ(Ip + Z)/Cλ(Ip) = Σk=0l Σ?∈Pk (?λ) Cκ(Z)/Cκ(Ip), where the Cλ's are zonal polynomials in p by p matrices. It is shown that C?(Z) etr(Z)/k! = Σl=k Σλ∈Pl (?λ) Cλ(Z)/l!. This identity is extended to analogous identities involving generalized Laguerre, Hermite, and other polynomials. Explicit expressions are given for all (?λ), ? ∈ Pk, k ≤ 3. Several identities involving the (?λ)'s are derived. These are used to derive explicit expressions for coefficients of Cλ(Z)l! in expansions of P(Z), etr(Z)k! for all monomials P(Z) in sj = tr Zj of degree k ≤ 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号