首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fully discretized incompressible Navier–Stokes equations are solved by splitting the algebraic system with an approximate factorization. This splitting affects the temporal convergence order of velocity and pressure. The splitting error is proportional to the pressure variable, and a simple analysis shows that the original convergence order of the time-integration scheme can be retained by solving for incremental pressure. The combination of splitting and incremental pressure is shown to be equivalent to an error-correcting method using the full pressure. In numerical experiments employing a third-order time-integration scheme and various orders for the pressure increment, the splitting error is shown to control the convergence order, and the full order of the scheme is recaptured for both velocity and pressure. The difference between perturbing the momentum or the continuity equation is also explored.  相似文献   

2.
For the three-dimensional incompressible Navier–Stokes equations, we present a formulation featuring velocity, vorticity and helical density as independent variables. We find the helical density can be observed as a Lagrange multiplier corresponding to the divergence-free constraint on the vorticity variable, similar to the pressure in the case of the incompressibility condition for velocity. As one possible practical application of this new formulation, we consider a time-splitting numerical scheme based on an alternating procedure between vorticity–helical density and velocity–Bernoulli pressure systems of equations. Results of numerical experiments include a comparison with some well-known schemes based on pressure–velocity formulation and illustrate the competitiveness on the new scheme as well as the soundness of the new formulation.  相似文献   

3.
4.
5.
The slip boundary conditions for the compressible Navier–Stokes equations are derived systematically from the Boltzmann equation on the basis of the Chapman–Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adjacent to the boundary. The resulting formulas of the slip boundary conditions are summarized with explicit values of the slip coefficients for hard-sphere molecules as well as the Bhatnagar–Gross–Krook model. These formulas, which can be applied to specific problems immediately, help to prevent the use of often used slip boundary conditions that are either incorrect or without theoretical basis.  相似文献   

6.
The present work details the Elastoplast (this name is a translation from the French “sparadrap”, a concept first applied by Yves Morchoisne for Spectral methods [1]) Discontinuous Galerkin (EDG) method to solve the compressible Navier–Stokes equations. This method was first presented in 2009 at the ICOSAHOM congress with some Cartesian grid applications. We focus here on unstructured grid applications for which the EDG method seems very attractive. As in the Recovery method presented by van Leer and Nomura in 2005 for diffusion, jumps across element boundaries are locally eliminated by recovering the solution on an overlapping cell. In the case of Recovery, this cell is the union of the two neighboring cells and the Galerkin basis is twice as large as the basis used for one element. In our proposed method the solution is rebuilt through an L2 projection of the discontinuous interface solution on a small rectangular overlapping interface element, named Elastoplast, with an orthogonal basis of the same order as the one in the neighboring cells. Comparisons on 1D and 2D scalar diffusion problems in terms of accuracy and stability with other viscous DG schemes are first given. Then, 2D results on acoustic problems, vortex problems and boundary layer problems both on Cartesian or unstructured triangular grids illustrate stability, precision and versatility of this method.  相似文献   

7.
We consider the Navier–Stokes equation on a two-dimensional torus with a random force, white noise in time, and analytic in space, for arbitrary Reynolds number R. We prove probabilistic estimates for the long-time behavior of the solutions that imply bounds for the dissipation scale and energy spectrum as R.  相似文献   

8.
9.
A spectral algorithm based on the immersed boundary conditions (IBC) concept is developed for simulations of viscous flows with moving boundaries. The algorithm uses a fixed computational domain with flow domain immersed inside the computational domain. Boundary conditions along the edges of the time-dependent flow domain enter the algorithm in the form of internal constraints. Spectral spatial discretization uses Fourier expansions in the stream-wise direction and Chebyshev expansions in the normal-to-the-wall direction. Up to fourth-order implicit temporal discretization methods have been implemented. It has been demonstrated that the algorithm delivers the theoretically predicted accuracy in both time and space. Performances of various linear solvers employed in the solution process have been evaluated and a new class of solver that takes advantage of the structure of the coefficient matrix has been proposed. The new solver results in a significant acceleration of computations as well as in a substantial reduction in memory requirements.  相似文献   

10.
We study space-periodic 2D Navier–Stokes equations perturbed by an unbounded random kick-force. It is assumed that Fourier coefficients of the kicks are independent random variables all of whose moments are bounded and that the distributions of the first N 0 coefficients (where N 0 is a sufficiently large integer) have positive densities against the Lebesgue measure. We treat the equation as a random dynamical system in the space of square integrable divergence-free vector fields. We prove that this dynamical system has a unique stationary measure and study its ergodic properties.  相似文献   

11.
This study compares several block-oriented preconditioners for the stabilized finite element discretization of the incompressible Navier–Stokes equations. This includes standard additive Schwarz domain decomposition methods, aggressive coarsening multigrid, and three preconditioners based on an approximate block LU factorization, specifically SIMPLEC, LSC, and PCD. Robustness is considered with a particular focus on the impact that different stabilization methods have on preconditioner performance. Additionally, parallel scaling studies are undertaken. The numerical results indicate that aggressive coarsening multigrid, LSC and PCD all have good algorithmic scalability. Coupling this with the fact that block methods can be applied to systems arising from stable mixed discretizations implies that these techniques are a promising direction for developing scalable methods for Navier–Stokes.  相似文献   

12.
We construct a third order multidimensional upwind residual distribution scheme for the system of the Navier–Stokes equations. The underlying approximation is obtained using standard P2 Lagrange finite elements. To discretise the inviscid component of the equations, each element is divided in sub-elements over which we compute a high order residual defined as the integral of the inviscid fluxes on the boundary of the sub-element. The residuals are distributed to the nodes of each sub-element in a multi-dimensional upwind way. To obtain a discretisation of the viscous terms consistent with this multi-dimensional upwind approach, we make use of a Petrov–Galerkin analogy. The analogy allows to find a family of test functions which can be used to obtain a weak approximation of the viscous terms. The performance of this high-order method is tested on flows with high and low Reynolds number.  相似文献   

13.
This paper presents an output-based adaptive algorithm for unsteady simulations of convection-dominated flows. A space–time discontinuous Galerkin discretization is used in which the spatial meshes remain static in both position and resolution, and in which all elements advance by the same time step. Error estimates are computed using an adjoint-weighted residual, where the discrete adjoint is computed on a finer space obtained by order enrichment of the primal space. An iterative method based on an approximate factorization is used to solve both the forward and adjoint problems. The output error estimate drives a fixed-growth adaptive strategy that employs hanging-node refinement in the spatial domain and slab bisection in the temporal domain. Detection of space–time anisotropy in the localization of the output error is found to be important for efficiency of the adaptive algorithm, and two anisotropy measures are presented: one based on inter-element solution jumps, and one based on projection of the adjoint. Adaptive results are shown for several two-dimensional convection-dominated flows, including the compressible Navier–Stokes equations. For sufficiently-low accuracy levels, output-based adaptation is shown to be advantageous in terms of degrees of freedom when compared to uniform refinement and to adaptive indicators based on approximation error and the unweighted residual. Time integral quantities are used for the outputs of interest, but entire time histories of the integrands are also compared and found to converge rapidly under the proposed scheme. In addition, the final output-adapted space–time meshes are shown to be relatively insensitive to the starting mesh.  相似文献   

14.
Journal of Experimental and Theoretical Physics - In the framework of the Global Regularity Problem for the incompressible Navier–Stokes (NS) equations in the whole space...  相似文献   

15.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

16.
In this paper we introduce a Relaxed Dimensional Factorization (RDF) preconditioner for saddle point problems. Properties of the preconditioned matrix are analyzed and compared with those of the closely related Dimensional Splitting (DS) preconditioner recently introduced by Benzi and Guo [7]. Numerical results for a variety of finite element discretizations of both steady and unsteady incompressible flow problems indicate very good behavior of the RDF preconditioner with respect to both mesh size and viscosity.  相似文献   

17.
We present an Asymptotic-Preserving ‘all-speed’ scheme for the simulation of compressible flows valid at all Mach-numbers ranging from very small to order unity. The scheme is based on a semi-implicit discretization which treats the acoustic part implicitly and the convective and diffusive parts explicitly. This discretization, which is the key to the Asymptotic-Preserving property, provides a consistent approximation of both the hyperbolic compressible regime and the elliptic incompressible regime. The divergence-free condition on the velocity in the incompressible regime is respected, and an the pressure is computed via an elliptic equation resulting from a suitable combination of the momentum and energy equations. The implicit treatment of the acoustic part allows the time-step to be independent of the Mach number. The scheme is conservative and applies to steady or unsteady flows and to general equations of state. One and two-dimensional numerical results provide a validation of the Asymptotic-Preserving ‘all-speed’ properties.  相似文献   

18.
In this paper we prove stability of Robin solid wall boundary conditions for the compressible Navier–Stokes equations. Applications include the no-slip boundary conditions with prescribed temperature or temperature gradient and the first order slip-flow boundary conditions. The formulation is uniform and the transitions between different boundary conditions are done by a change of parameters. We give different sharp energy estimates depending on the choice of parameters.  相似文献   

19.
A Newton–Krylov method is developed for the solution of the steady compressible Navier–Stokes equations using a discontinuous Galerkin (DG) discretization on unstructured meshes. Steady-state solutions are obtained using a Newton–Krylov approach where the linear system at each iteration is solved using a restarted GMRES algorithm. Several different preconditioners are examined to achieve fast convergence of the GMRES algorithm. An element Line-Jacobi preconditioner is presented which solves a block-tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-ILU(0)) is also presented as a preconditioner, where the factorization is performed using a reordering of elements based upon the lines of maximum coupling. This reordering is shown to be superior to standard reordering techniques (Nested Dissection, One-way Dissection, Quotient Minimum Degree, Reverse Cuthill–Mckee) especially for viscous test cases. The Block-ILU(0) factorization is performed in-place and an algorithm is presented for the application of the linearization which reduces both the memory and CPU time over the traditional dual matrix storage format. Additionally, a linear p-multigrid preconditioner is also considered, where Block-Jacobi, Line-Jacobi and Block-ILU(0) are used as smoothers. The linear multigrid preconditioner is shown to significantly improve convergence in term of number of iterations and CPU time compared to a single-level Block-Jacobi or Line-Jacobi preconditioner. Similarly the linear multigrid preconditioner with Block-ILU smoothing is shown to reduce the number of linear iterations to achieve convergence over a single-level Block-ILU(0) preconditioner, though no appreciable improvement in CPU time is shown.  相似文献   

20.
This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号