首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of [CO] on acetyl-CoA synthesis activity of the isolated alpha subunit of acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica was determined. In contrast to the complete alpha(2)beta(2) enzyme where multiple CO molecules exhibit strong cooperative inhibition, alpha was weakly inhibited, apparently by a single CO with K(I) = 1.5 +/- 0.5 mM; other parameters include k(cat) = 11 +/- 1 min(-)(1) and K(M) = 30 +/- 10 microM. The alpha subunit lacked the previously described "majority" activity of the complete enzyme but possessed its "residual" activity. The site affording cooperative inhibition may be absent or inoperative in isolated alpha subunits. Ni-activated alpha rapidly and reversibly accepted a methyl group from CH(3)-Co(3+)FeSP affording the equilibrium constant K(MT) = 10 +/- 4, demonstrating the superior nucleophilicity of alpha(red) relative to Co(1+)FeSP. CO inhibited this reaction weakly (K(I) = 540 +/- 190 microM). NiFeC EPR intensity of alpha developed in accordance with an apparent K(d) = 30 microM, suggesting that the state exhibiting this signal is not responsible for inhibiting catalysis or methyl group transfer and that it may be a catalytic intermediate. At higher [CO], signal intensity declined slightly. Attenuation of catalysis, methyl group transfer, and the NiFeC signal might reflect the same weak CO binding process. Three mutant alpha(2)beta(2) proteins designed to block the tunnel between the A- and C-clusters exhibited little/no activity with CO(2) as a substrate and no evidence of cooperative CO inhibition. This suggests that the tunnel was blocked by these mutations and that cooperative CO inhibition is related to tunnel operation. Numerous CO molecules might bind cooperatively to some region associated with the tunnel and institute a conformational change that abolishes the majority activity. Alternatively, crowding of CO in the tunnel may control flow through the tunnel and deliver CO to the A-cluster at the appropriate step of catalysis. Residual activity may involve CO from the solvent binding directly to the A-cluster.  相似文献   

2.
The four-coordinate Ni(+) complex [PhTt(t)(Bu)]Ni(I)CO, where PhTt(t)()(Bu) = phenyltris((tert-buthylthio)methyl)borate (a tridentate thioether donor ligand), serves as a possible model for key Ni-CO reaction intermediates in the acetyl-CoA synthase (ACS) catalytic cycle. Resonance Raman, electronic absorption, magnetic circular dichroism (MCD), variable-temperature variable-field MCD, and electron paramagnetic resonance spectroscopies were utilized in conjunction with density functional theory and semiemperical INDO/S-CI calculations to investigate the ground and excited states of [PhTt(t)()(Bu)]Ni(I)CO. These studies reveal extensive Ni(+) --> CO pi-back-bonding interactions, as evidenced by a low C-O stretching frequency (1995 cm(-)(1)), a calculated C-O stretching force constant of 15.5 mdyn/A (as compared to k(CO)(free CO) = 18.7 mdyn/A), and strong Ni(+) --> CO charge-transfer absorption intensities. Calculations reveal that this high degree of pi-back-bonding is due to the fact that the Ni(+) 3d orbitals are in close energetic proximity to the CO pi acceptor orbitals. In the ACS "paramagnetic catalytic cycle", the high degree of pi-back-bonding in the putative Ni(+)-CO intermediate (the NiFeC species) is not expected to preclude methyl transfer from CH(3)-CoFeSP.  相似文献   

3.
4.
Time-resolved infrared spectroscopic studies have been used to characterize the reactive intermediate CH3C(O)Co(CO)2PPh3 (ICo), which is relevant to the mechanism of the catalysis of alkene hydroformylation by the phosphine-modified cobalt carbonyls. Step-scan FTIR and (variable) single-frequency time-resolved infrared detection on the microsecond time scale were used to record the spectrum of ICo and to demonstrate that the principal photoproduct of the subsequent reaction of this species at PCO = 1 atm is the methyl cobalt complex CH3Co(CO)3PPh3 (MCo). At higher PCO the trapping of ICo with CO to re-form CH3C(O)Co(CO)3PPh3 (ACo) (rate = kCO[CO][ICo]) was shown to become competitive with the rate of acetyl-to-cobalt methyl migration to give MCo (rate = kM[ICo]). Activation parameters for the competing pathways in benzene were determined to be delta H++CO = 57 +/- 04 kJ mol-1, delta S++CO = -91 +/- 12 J mol-1 K-1 and delta H++M = 40 +/- 2 kJ mol-1, delta S++M = -19 +/- 5 J mol-1 K-1. The effects of varying the solvent on the competitive reactions of ICo were also explored, and the mechanistic implications of these results are discussed.  相似文献   

5.
Electrochemical, magnetic, and spectroscopic properties are reported for homoleptic divalent (M = Mn, Fe, Co, Ni, Ru) and trivalent (M = Cr, Mn, Fe, Co) metal-bis[poly(pyrazolyl)borate] complexes, [M(pzb)(2)](+/0), where pzb(-) = hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-dimethylpyrazolyl)borate (Tp), or tetrakis(pyrazolyl)borate (pzTp). Ligand field strengths in metal-pzb complexes increase as Tp < Tp < pzTp, which reflects the importance of steric rather than electronic effects on spectroscopic properties. However, metal-centered redox potentials become more negative as pzTp < Tp < Tp, which follows the electron-donating ability of the ligands. Co(III)/Co(II) and Mn(III)/Mn(II) electrode reactions are accompanied by a change in metal atom spin-state; i.e., (S = 0) [Co(pzb)(2)](+) + e(-) <==> (S = 3/2) [Co(pzb)(2)] and (S = 1) [Mn(pzb)(2)](+) + e(-) <==> (S = 5/2) [Mn(pzb)(2)]. Apparent heterogeneous electron-transfer rate constants derived from sweep-rate dependent cyclic voltammetric peak potential separations in 1,2-dichloroethane are small and decrease as pzTp > Tp > Tp for the Co(III)/Co(II) couples. Slow electron transfer is characteristic of coupled electron transfer and spin exchange. [M(Tp)(2)](+/0) redox potentials relative to values for other homoleptic MN(6)(3+/2+) couples change as M varies from Cr to Ni. For early members of the series, [M(Tp)(2)](+/0) potentials nearly equal those of complexes with aliphatic N-donor ligands (e.g., triazacyclononane, sarcophagine). However, [M(Tp)(2)](+/0) potentials approach those of [M(bpy)(3)](3+/2+) for later members of the series. The variation suggests a change in the nature of the metal-pzb interaction upon crossing the first transition row.  相似文献   

6.
Fundamental information concerning the mechanism of electron transfer from reduced heteropolytungstates (POM(red)) to O2, and the effect of donor-ion charge on reduction of O2 to superoxide anion (O2.-), is obtained using an isostructural series of 1e--reduced donors: alpha-X(n+)W12O40(9-n)-, X(n+) = Al3+, Si4+, P5+. For all three, a single rate expression is observed: -d[POM(red)]/dt = 2k12[POM(red)][O2], where k12 is for the rate-limiting electron transfer from POM(red) to O2. At pH 2 (175 mM ionic strength), k12 increases from 1.4 +/- 0.2 to 8.5 +/- 1 to 24 +/- 2 M-1s-1 as Xn+ is varied from P5+ (3red) to Si4+ (2red) to Al3+ (1red). Variable-pH data (for 1red) and solvent-kinetic isotope (KIE = kH/kD) data (all three ions) indicate that protonated superoxide (HO2.) is formed in two steps--electron transfer, followed by proton transfer (ET-PT mechanism--rather than via simultaneous proton-coupled electron transfer (PCET). Support for an outersphere mechanism is provided by agreement between experimental k12 values and those calculated using the Marcus cross relation. Further evidence is provided by the small variation in k12 observed when Xn+ is changed from P5+ to Si4+ to Al3+, and the driving force for formation of O2.- (aq), which increases as cluster-anion charge becomes more negative, increases by nearly +0.4 V (a decrease of >9 kcal mol-1 in DeltaG degrees ). The weak dependence of k12 on POM reduction potentials reflects the outersphere ET-PT mechanism: as the anions become more negatively charged, the "successor-complex" ion pairs are subject to larger anion-anion repulsions, in the order [(3(ox)3-)(O2.-)]4- < [(2(ox)4-)(O2.-)]5- < [(1(ox)5-)(O2.-)]6-. This reveals an inherent limitation to the use of heteropolytungstate charge and reduction potential to control rates of electron transfer to O2 under turnover conditions in catalysis.  相似文献   

7.
The cobalt(III) complexes, [(NH3)5CoBr]2+ and [(NH3)5CoI]2+ are reduced by Ti(II) solutions containing Ti(IV), generating nearly linear (zero-order) profiles that become curved only during the last few percent of reaction. Other Co(III)-Ti(II) systems exhibit the usual exponential traces with rates proportional to [Co(III)]. Observed kinetics of the biphasic catalyzed Ti(II)-Co(III)Br and Ti(II)-Co(III)I reactions support the reaction sequence: [Ti(II)(H20)n]2+ + [Ti(IV)F5]- (k1)<==>(k -1) [Ti(II)(H2O)(n-1)]2+ + [(H2O)Ti(IV)F5]-, [Ti(II)(H2O)(n-1)]2+ + Co(III) (k2)--> Ti(III) + Co(II) with rates determined mainly by the slow Ti(IV)-Ti(II) ligand exchange (k1 = 9 x 10(-3) M(-1) s(-1) at 22 degrees C). Computer simulations of the catalyzed Ti(II)-Co(III) reaction in perchlorate-triflate media yield relative rates for reduction by the proposed active [Ti(II)(H2O)(n-1)]2+ intermediate; k(Br)/k(I) = 8.  相似文献   

8.
Kofod P  Harris P 《Inorganic chemistry》2004,43(8):2680-2688
The (13)C chemical shifts of methylcobalt(III) compounds with saturated amine ligands in cis positions to the methyl group and a monodentate ligand, L = CN(-), NH(3), NO(2)(-), N(3)(-), H(2)O, or OH(-), in the trans position are reported. The amine ligands used, 1,2-ethanediamine (en), 1,3-propanediamine (tn), N,N'-bis(2-aminoethyl)-1,3-propanediamine (2,3,2-tet), N,N'-bis(3-aminopropyl)-1,2-ethanediamine (3,2,3-tet), and 1,4,8,11-tetraazacyclotetradecane (cyclam), all exert an apparent cis influence on the (13)C resonance signal of the coordinated methyl group. In the trans-[Co(en)(2)(CH(3))(L)](n+) series the (15)N resonance frequency of the coordinated en has also been measured. The influence of L on the en (15)N chemical shifts is reverse the influence on the methyl (13)C chemical shifts except in the case of L = NO(2)(-), which affects a further deshielding of the amine nitrogen nucleus. The methyl (1)J(CH) coupling constants in the trans-[Co(en)(2)(CH(3))(L)](n+) series range from 128.09 Hz (L = CN(-)) to 134.11 Hz (L = H(2)O). The crystal structures of trans-[Co(en)(2)(CH(3))(ClZnCl(3))], trans-[Co(3,2,3-tet)(CH(3))(N(3))]ClO(4), trans,trans-[(CH(3))(en)(2)Co(CN)Co(en)(2)(CH(3))](PF(6))(3)(CH(3)CN), and cis-[Co(en)(2)(CH(3))(NH(3))]ZnCl(4) were determined from low-temperature X-ray diffraction data.  相似文献   

9.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

10.
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) ?, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) ?, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) ?, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) ?, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) ?, b = 16.225(4) ?, c = 18.371(5) ?, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.  相似文献   

11.
A novel colorimetric sensor based on 8-hydroxy quinoline-5-azo-4'-nitrobenzene (1) was prepared and used for recognizing anions. 1 and its metal complex (1.Co) were found to show response to anions such as CH(3)CO(2)(-), H(2)PO(4)(-), HSO(4)(-), F(-) and dramatic color changes were observed. The selectivity and sensitivity of 1 and 1.Co for sensing anions were different, which was in the order of CH(3)CO(2)(-)>F(-)>H(2)PO(4)(-)>HSO(4)(-) for 1 and H(2)PO(4)(-)>HSO(4)(-)>CH(3)CO(2)(-) approximately F(-) for 1.Co, respectively. In CH(3)CN, sensor 1.Co exhibited excellent specificity toward H(2)PO(4)(-), and the color variety was dependent on the concentration of H(2)PO(4)(-) which was attributed to anion structure and stability of anionic complex (1-anion), metal complex (1-Co) and inorganic complex (Co-anion).  相似文献   

12.
The reaction of dipropargyl phthalate C6H4-1,2-(CO2CH2C2H-μ)2 1 with octacarbonyldicobalt 2 resulted in the formation of red complex [C6H4-1,2-(CO2CH2C2H-μ)2][Co2(CO)6]2 3, in which each Co2(CO)6 group coordinates to one of the two C≡C bonds of 1. Molecular structure of complex 3 was determined by single crystal X-ray analyses. The crystal belongs to the monoclinic system, space group P21/a with the following crystallographic parameters: a=8.521(2), b=29.143(6), c=12.918(7)(A), β= 100.12(3)°, V=3158(2)(A)3, Z=4, Mr=814.09, Dc=1.712 g.cm-3, F(000)=1608, μ(Mo-Kα)=21.37 cm-1 and final R=0.044 for 3151 observations.  相似文献   

13.
The serendipitous discovery of a 3D [Cu(CO(3))(2)(2-)](n) network with the topology of the 4(2)6(4) sodalite net in [Cu(6)(CO(3))(12)(CH(6)N(3))(8)].K(4).8H(2)O paved the way for the deliberate engineering of an extensive series of structurally related guanidinium-templated metal carbonates of composition [M(6)(CO(3))(12)(CH(6)N(3))(8)]Na(3-)[N(CH(3))(4)].xH(2)O, where the divalent metal M in the framework may be Mg, Mn, Fe, Co, Ni, Cu, Zn, or Cd. A closely related crystalline material with a [Ca(CO(3))(2)(2-)](n) sodalite-like framework, but containing K(+) rather than Na(+), of composition [Ca(6)(CO(3))(12)(CH(6)N(3))(8)]K(3)[N(CH(3))(4)].3H(2)O was also isolated. All of these compounds were obtained under the simplest possible conditions from aqueous solution at room temperature, and their structures were determined by single-crystal X-ray diffraction. Pairs of guanidinium cations are associated with the hexagonal windows of the sodalite cages, alkali-metal cations are associated with their square windows, and N(CH(3))(4)(+) ions are located at their centers. Structures fall into two classes depending on the metal, M(II), in the framework. One type, the BC type (Im3m), comprising the compounds for which M(2+) = Ca(2+), Mn(2+), Cu(2+), and Cd(2+), has a body-centered cubic unit cell, while the second type, the FC type (Fd3c), for which M(2+) = Mg(2+), Fe(2+), Co(2+), Ni(2+), and Zn(2+), has a face-centered cubic unit cell with edges on the order of twice those of the BC structural type. The metal M in the BC structures has four close carbonate oxygen donors and four other more distant ones, while M in the FC structures has an octahedral environment consisting of two bidentate chelating carbonate ligands and two cis monodentate carbonate ligands.  相似文献   

14.
The reaction of 2 equiv of the bulky ligand N,N'-bis(3,5-di-tert-butylphenyl)-1,2-phenylenediamine, H2[3L(PDI)], excess triethylamine, and 1 equiv of M(CH3CO2)2.4H2O (M = Ni, Co) in the presence of air in CH3CN/CH2Cl2 solution yields violet-black crystals of [Ni(II)(3L(ISQ))2] CH3CN (1) or violet crystals of [Co(3L)2] (3). By using Pd(CH3CO2)2 as starting material, green-blue crystals of [Pd(II)(3L(ISQ))2].CH3CN (2) were obtained. Single-crystal X-ray crystallography revealed that 1 and 3 contain (pseudo)tetrahedral neutral molecules [M(3L)2] (M = Ni, Co) whereas in 2 nearly square planar, neutral molecules [Pd(II)(3L(ISQ))2] are present. Temperature-dependent susceptibility measurements established that 1 and 2 are diamagnetic (S = 0) whereas 3 is paramagnetic with an S = 3/2 ground state. It is shown that 1 contains two pi radical benzosemiquinonate(1-)-type monoanions, ((3L(ISQ))(1-*), S(rad) = 1/2), and a central Ni(II) ion (d8; S = 1) which are antiferromagnetically coupled yielding the observed S(t) = 0 ground state. This result has been confirmed by broken symmetry DFT calculations of 1. In contrast, the S(t) = 3/2 ground state of 3 is more difficult to understand: the two resonance structures [Co(III)(3L(ISQ))(3L(PDI))] <--> [Co(II)(3L(PDI))(3L(IBQ))] might be invoked (for tetrahedral [Co(II)(3L(ISQ))2] containing an S(Co) = 3/2 with two antiferromagnetically coupled pi-radical ligands an S(t) = 1/2 is anticipated). Complex 2 is diamagnetic (S = 0) containing a Pd(II) ion (d8, S(Pd) = 0 in an almost square planar ligand field) and two antiferromagnetically coupled ligand radicals (S(rad) = 1/2). The electrochemistry and spectroelectrochemistry of 1, 2, and 3 have been studied, and electron-transfer series comprising the species [M(L)2]z (z = 2+, 1+, 0, 1-, 2-) have been established. All oxidations and reductions are ligand centered.  相似文献   

15.
The crystal structures of [Co 2L(Cl)](ClO 4) 3 ( 1), [Co 2L(Br)](ClO 4) 3 ( 2), [Co 2L(OH)(OH 2)]I 3 ( 3), and [Co 2L (1)(Cl)](ClO 4) 3 ( 4), the density functional theory calculations, as well as the binding constants of [Co 2L] (4+) toward Cl (-) and Br (-) and of [Co 2L (1)] (4+) toward Cl (-), are reported in this paper (L = N[(CH 2) 2NHCH 2(C 6H 4- p)CH 2NH(CH 2) 2] 3N, L (1) = N[(CH 2) 2NHCH 2(C 6H 4- m)CH 2NH(CH 2) 2] 3N). The rigid dicobalt(II) cryptate [Co 2L] (4+) shows the recognition of Cl (-) and Br (-) but not of F (-) and I (-), because of the size matching to its rigid cavity. We also found that the relative rigid tripodal skeleton of L than that of L (1) results in the higher affinity of [Co 2L] (4+) toward Cl (-). Magnetic susceptibility measurements of 1 and 2 indicate that the two Co(II) atoms in the cryptates are antiferromagnetically coupled through the Cl (-)/Br (-) bridge, with g = 2.19, J = -13.7 cm (-1) for 1, and g = 2.22, J = -17.1 cm (-1) for 2.  相似文献   

16.
Reported here are self-exchange reactions between iron 2,2'-bi(tetrahydro)pyrimidine (H(2)bip) complexes and between cobalt 2,2'-biimidazoline (H(2)bim) complexes. The (1)H NMR resonances of [Fe(II)(H(2)bip)(3)](2+) are broadened upon addition of [Fe(III)(H(2)bip)(3)](3+), indicating that electron self-exchange occurs with k(Fe,e)(-) = (1.1 +/- 0.2) x 10(5) M(-1) s(-1) at 298 K in CD(3)CN. Similar studies of [Fe(II)(H(2)bip)(3)](2+) plus [Fe(III)(Hbip)(H(2)bip)(2)](2+) indicate that hydrogen-atom self-exchange (proton-coupled electron transfer) occurs with k(Fe,H.) = (1.1 +/- 0.2) x 10(4) M(-1) s(-1) under the same conditions. Both self-exchange reactions are faster at lower temperatures, showing small negative enthalpies of activation: DeltaH++(e(-)) = -2.1 +/- 0.5 kcal mol(-1) (288-320 K) and DeltaH++(H.) = -1.5 +/- 0.5 kcal mol(-1) (260-300 K). This behavior is concluded to be due to the faster reaction of the low-spin states of the iron complexes, which are depopulated as the temperature is raised. Below about 290 K, rate constants for electron self-exchange show the more normal decrease with temperature. There is a modest kinetic isotope effect on H-atom self-exchange of 1.6 +/- 0.5 at 298 K that is close to that seen previously for the fully high-spin iron biimidazoline complexes.(12) The difference in the measured activation parameters, E(a)(D) - E(a)(H), is -1.2 +/- 0.8 kcal mol(-1), appears to be inconsistent with a semiclassical view of the isotope effect, and suggests extensive tunneling. Reactions of [Co(H(2)bim)(3)](2+)-d(24) with [Co(H(2)bim)(3)](3+) or [Co(Hbim)(H(2)bim)(2)](2+) occur with scrambling of ligands indicating inner-sphere processes. The self-exchange rate constant for outer-sphere electron transfer between [Co(H(2)bim)(3)](2+) and [Co(H(2)bim)(3)](3+) is estimated to be 10(-)(6) M(-1) s(-1) by application of the Marcus cross relation. Similar application of the cross relation to H-atom transfer reactions indicates that self-exchange between [Co(H(2)bim)(3)](2+) and [Co(Hbim)(H(2)bim)(2)](2+) is also slow, < or =10(-3) M(-1) s(-1). The slow self-exchange rates for the cobalt complexes are apparently due to their interconverting high-spin [Co(II)(H(2)bim)(3)](2+) with low-spin Co(III) derivatives.  相似文献   

17.
Organocobalt derivatives of tetracationic water-soluble porphyrins are difficult to prepare via the typical reductive alkylation of the Co(II)(por) (porH(2) = porphyrin ligand). None have been reported. The problem may arise because the porphyrin core is made relatively electron poor by the positively charged peripheral groups. We have circumvented this problem by using the [Co(III)(NH(3))(5)CH(3)](2+) reagent, which inserts the Co(III)-CH(3) moiety directly into porH(2) in water under basic conditions. The method afforded two new [CH(3)Co(por)](4+) derivatives, [CH(3)CoTMpyP(4)](4+) and [CH(3)CoTMAP](4+), where [TMpyP(4)](4+) and [TMAP](4+) are the coordinated, NH-deprotonated forms of meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin and meso-tetrakis(N,N,N-trimethylaniliniumyl)porphyrin, respectively. The binding of the two new [CH(3)Co(por)](4+) cations to DNA and to the synthetic DNA polymers [poly(dA-dT)](2) and [poly(dG-dC)](2) was studied. Using published criteria by which changes in DNA viscosity and in the visible and CD spectra in the Soret region can be used to assess DNA binding, we conclude that both are outside binders. A large hypochromicity of the Soret bands of the [CH(3)Co(por)](4+) cations observed upon outside binding to DNA may indicate a high degree of self-stacking. The visible absorption and CD spectra of the [CH(3)Co(por)](4+) cations in the presence of 1:1 mixtures of [poly(dA-dT)](2) and [poly(dG-dC)](2) are nearly identical to those with [poly(dA-dT)](2) alone and are very different from those of [poly(dG-dC)](2) alone. Thus, both cations show a high preference for outside binding at AT-rich over GC-rich DNA sites. Upon binding of each of the [CH(3)Co(por)](4+) cations to all of the DNA polymers, the Soret bands exhibit blue shifts, whereas the Soret bands of the corresponding [(H(2)O)(2)Co(por)](5+) cations exhibit red shifts. The blue shifts strongly suggest that the [CH(3)Co(por)](4+) cations, particularly [CH(3)CoTMAP](4+), become five-coordinate forms to some extent on DNA binding; this result is the first good evidence for the presence at equilibrium of five-coordinate CH(3)Co(III)(N(4)) forms in water.  相似文献   

18.
The red, five-coordinate complexes Ru(CO)Cl(PPh(3))2(CH=CHPh) and [Ru(CO)Cl(PPh(3))2]2(mu-CH=CHC(6)H(4)CH=CH) undergo reversible coordination of PPh(3) at low temperature to produce the pale yellow, six-coordinate complexes Ru(CO)Cl(PPh(3))3(CH=CHPh) and [Ru(CO)Cl(PPh(3))3]2(mu-CH=CHC(6)H(4)CH=CH). X-ray crystal structures of the latter complex and of the hydride complex RuH(CO)Cl(PPh(3))3 were obtained. 1H and 31P NMR spectra between 20 and -70 degrees C exhibit large changes in both equilibrium constants and dynamic effects. Thermodynamic parameters, DeltaH = -17.5 +/- 2.0 kcal/mol and DeltaS = -57.5 +/- 7.6 eu, were obtained for PPh(3) coordination to the monoruthenium complex, and activation parameters, DeltaH = 20.6 +/- 0.7 kcal/mol and DeltaS = 41.6 +/- 2.0 eu, were obtained for the reverse decoordination. Coordination of PPh(3) was not observed upon cooling of the shorter bridged complex, [Ru(CO)Cl(PPh(3))2]2(mu-CH=CHCH=CH).  相似文献   

19.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methyl-coenzyme M (CH(3)S-CH(2)CH(2)SO(3)) from methane. The active site is a nickel tetrahydrocorphinoid cofactor, factor 430, which in inactive form contains EPR-silent Ni(II). Two such forms, denoted MCR(silent) and MCR(ox1)(-)(silent), were previously structurally characterized by X-ray crystallography. We describe here the cryoreduction of both of these MCR forms by gamma-irradiation at 77 K, which yields reduced protein maintaining the structure of the oxidized starting material. Cryoreduction of MCR(silent) yields an EPR signal that strongly resembles that of MCR(red1), the active form of MCR; and stepwise annealing to 260-270 K leads to formation of MCR(red1). Cryoreduction of MCR(ox1)(-)(silent) solutions shows that our preparative method for this state yields enzyme that contains two major forms. One behaves similarly to MCR(silent), as shown by the observation that both of these forms give essentially the same redlike EPR signals upon cryoreduction, both of which give MCR(red1) upon annealing. The other form is assigned to the crystallographically characterized MCR(ox1)(-)(silent) and directly gives MCR(ox1) upon cryoreduction. X-band spectra of these cryoreduced samples, and of conventionally prepared MCR(red1) and MCR(ox1), all show resolved hyperfine splitting from four equivalent nitrogen ligands with coupling constants in agreement with those determined in previous EPR studies and from (14)N ENDOR of MCR(red1) and MCR(ox1). These experiments have confirmed that all EPR-visible forms of MCR contain Ni(I) and for the first time generated in vitro the EPR-visible, enzymatically active MCR(red1) and the activate-able "ready" MCR(ox1) from "silent" precursors. Because the solution Ni(II) species we assign as MCR(ox1)(-)(silent) gives as its primary cryoreduction product the Ni(I) state MCR(ox1), previous crystallographic data on MCR(ox1)(-)(silent) allow us to identify the exogenous axial ligand in MCR(ox1) as the thiolate from CoM; the cryoreduction experiments further allow us to propose possible axial ligands in MCR(red1). The availability of model compounds for MCR(red1) and MCR(ox1) also is discussed.  相似文献   

20.
The electrochemistry and spectroelectrochemistry of a novel series of mixed-ligand diruthenium compounds were examined. The investigated compounds having the formula Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl where x = 1-3 and Fap is 2-(2-fluoroanilino)pyridinate anion were made from the reaction of Ru(2)(CH(3)CO(2))(4)Cl with 2-(2-fluoroanilino)pyridine (HFap) in refluxing methanol. The previously characterized Ru(2)(Fap)(4)Cl as well as the three newly isolated compounds represented as Ru(2)(CH(3)CO(2))(Fap)(3)Cl (1), Ru(2)(CH(3)CO(2))(2)(Fap)(2)Cl (2), and Ru(2)(CH(3)CO(2))(3)(Fap)Cl (3) possess three unpaired electrons with a Ru(2)(5+) dimetal core. Complexes 1 and 2 have well-defined Ru(2)(5+/4+) and Ru(2)(5+/6+) redox couples in CH(2)Cl(2), but 3 exhibits a more complicated electrochemical behavior due to equilibria involving association or dissociation of the anionic chloride axial ligand on the initial and oxidized or reduced forms of the compound. The E(1/2) values for the Ru(2)(5+/4+) and Ru(2)(5+/6+) processes vary linearly with the number of CH(3)CO(2)(-) bridging ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl and plots of reversible half-wave potentials vs the number of acetate groups follow linear free energy relationships with the largest substituent effect being observed for the oxidation. The major UV-visible band of the examined compounds in their neutral Ru(2)(5+) form is located between 550 and 800 nm in CH(2)Cl(2) and also varies linearly with the number of CH(3)CO(2)(-) ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl. The electronic spectra of the singly oxidized and singly reduced forms of each diruthenium species were characterized by UV-visible spectroelectrochemistry in CH(2)Cl(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号