首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.  相似文献   

2.
有机小分子电子受体材料的侧基能够影响异质结有机太阳能电池的给体/受体匹配和器件性能。我们设计并合成了一个硼原子带有噻吩侧基的有机硼小分子(MBN-Th)。该分子的LUMO离域在整个骨架上,HOMO定域在中心核上,其独特的电子结构使该分子具有两个强的吸收峰(波长分别为490和726nm),因此分子具有宽的吸收光谱和强的太阳光吸收能力。与苯基侧基相比,噻吩侧基使分子的HOMO能级下移0.1 eV,LUMO能级保持不变,进而引起分子带隙减小和吸收光谱蓝移20nm。基于该有机硼小分子受体材料的异质结有机太阳能电池,实现了4.21%的能量转化效率和300–850nm的宽响应光谱。实验结果表明,硼原子上的噻吩侧基是调控有机硼小分子光电性质的有效方法,可以用于有机硼小分子受体材料的设计。  相似文献   

3.
To exploit the potential of our newly developed three-dimensional (3D) dimerized acceptors, a series of chlorinated 3D acceptors (namely CH8-3/4/5) were reported by precisely tuning the position of chlorine (Cl) atom. The introduction of Cl atom in central unit affects the molecular conformation. Whereas, by replacing fluorinated terminal groups (CH8-3) with chlorinated terminal groups (CH8-4 and CH8-5), the red-shift absorption and enhanced crystallization are achieved. Benefiting from these, all devices received promising power conversion efficiencies (PCEs) over 16 % as well as decent thermal/photo-stabilities. Among them, PM6:CH8-4 based device yielded a best PCE of 17.58 %. Besides, the 3D merits with multi alkyl chains enable their versatile processability during the device preparation. Impressive PCEs of 17.27 % and 16.23 % could be achieved for non-halogen solvent processable devices prepared in glovebox and ambient, respectively. 2.88 cm2 modules also obtained PCEs over 13 % via spin-coating and blade-coating methods, respectively. These results are among the best performance of dimerized acceptors. The decent performance of CH8-4 on small-area devices, modules and non-halogen solvent-processed devices highlights the versatile processing capability of our 3D acceptors, as well as their potential applications in the future.  相似文献   

4.
最近几年,有机太阳能电池中的非富勒烯小分子受体研究引起了人们的兴趣。其中,苝二酰亚胺(PDI)类分子因具有良好的电子传输能力,较强的电子亲和力,稳定的光、热、化学性能以及化学结构的可设计性带来的性能可调控性而得到广泛的关注。本文总结了近三年来在体异质结有机太阳能电池应用方面PDI小分子受体的研究进展,重点关注了PDI分子结构对其性能的影响,希望为以后PDI类受体分子的设计思路起到一定的启发作用。  相似文献   

5.
Organic solar cells (OSCs) have gained attention of the scientific community from the last decade and are now considered as one of the most important source for low‐cost power production. The recent rapid progress in non‐fullerene acceptors in BHJ indicates that they have potential to compete with fullerene‐based BHJ OSCs. The present review addressed the systematic comparison among various acceptors (diketopyrrolopyrrole (DPP), benzothiadiazole (BTD) and perylenediimide (PDI) based acceptors) in order to design and improve the performance of small molecules based non‐fullerene acceptors. This review focuses on the performance of small molecule non‐fullerene acceptors based on DPP, BTD and PDI for OSCs with respect to the change in molecular structures, energy levels, and PCE. A systematic comparison on the effect of molecular architecture, side chains on their performance is provided with the intention of evaluating the challenge to make highly efficient acceptors for the next generation organic photovoltaics.  相似文献   

6.
This personal account describes the pursuit of non‐fullerene acceptors designed from simple and accessible organic pi‐conjugated building blocks and assembled through efficient direct (hetero)arylation cross‐coupling protocols. Initial materials development focused on isoindigo and diketopyrrolopyrrole organic dyes flanked by imide‐based terminal acceptors. Efficiencies in solution‐processed organic solar cells were modest but highlighted the potential of the material design. Materials performance was improved through structural engineering to pair perylene diimide with these organic dyes. Optimization of active layer processing and solar cell device fabrication identified the perylene diimide flanked diketopyrrolopyrrole structure as the best framework, with fullerene‐free organic solar cells achieving power conversion efficiencies above 6 %. This material has met our criteria for a simple wide band gap fullerene alternative for pairing with a range of donor polymers.  相似文献   

7.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

8.
This review summarizes the recent progress of perylene diimide (PDI) derivatives used as the acceptor materials in non-fullerene organic solar cells. The resulting structure-property correlations and design strategies of this type of acceptors are discussed and commented, which will help to constructing high-performance PDI-based acceptor materials in the future. The problems at present and the effort direction are also pointed out in this review.  相似文献   

9.
Reducing non-radiative recombination energy loss (ΔE3) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE3, the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π–π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE3. This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.  相似文献   

10.
近年来,有机场效应晶体管(OFETs)由于在柔性器件和可穿戴电子学中的潜在应用受到了学术界和工业界的普遍关注,尤其是以聚合物半导体材料构筑的晶体管性能得到了快速的发展.如何设计合成用于OFETs的高性能聚合物半导体材料,一直是我们的追求目标.然而,分子结构对迁移率的影响仍缺少系统的比较.本文综述了近年来国内外新型聚合物材料的最新进展.我们按照材料的种类以及载流子的传输类型进行了分类,对高性能聚合物材料的发展过程、材料的设计思路以及相应的FETs性能进行了系统地归纳总结.通过研究分子及分子聚集态结构与器件性能之间的关系,希望为以后设计合成新型的高性能的聚合物材料提供有益的借鉴和指导.  相似文献   

11.
The semitransparent flexible organic solar cell takes advantages of flexibility, transparency, color adjustment property, which is more conducive to integrate on buildings and mobile terminals. Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors, the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%. This review summarizes the molecular design of the most representative active layer materials, and discusses the characterization of semitransparent parameters paradigms, then we discuss how to optimize the device in combination with optical simulation, and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells, and give our perspectives on the next step direction.  相似文献   

12.
Two dithienocyclopentafluorene-based small-molecule acceptors (SMAs) were developed that feature methylene-functionalized conjugated side chains, to study the effect of arylmethylene substitution and its number on structure, optoelectronic properties and device performance. Results showed that two SMAs have better absorption properties and planarity, lower bandgaps and higher LUMOs compared with the control SMA without conjugated side chains. The synthesized SMAs were tested in polymer solar cells for examples of their applicability. This work argues that the introduction of methylene-functionalized conjugated side chains has great potential in tuning molecular structure, optoelectronic properties, device physics and photovoltaic performance of SMAs.  相似文献   

13.
Polymer electron acceptors are the key materials in all-polymer solar cells(all-PSCs).In this review,we focused on introducing the principle of boron-nitrogen coordination bond(B←N),and summarizing our recent research on polymer electron acceptors containing B←N unit for efficient all-PSC devices.Two approaches have been reported to design polymer electron acceptors using B←N unit.One is to replace a C-C unit by a B←N unit in conjugated polymers to transform a polymer electron donor to a polymer electron acceptor.The other approach is to construct novel electron-deficient building block based on B←N unit for polymer electron acceptors.The polymer electron acceptors containing B←N unit showed tunable lowest unoccupied molecular orbital(LUMO) energy levels and exhibited excellent all-PSC device performance with power conversion efficiency of exceeding6%.These results indicate that organic boron chemistry is a new toolbox to develop functional polymer materials for optoelectronic device applications.  相似文献   

14.
With the emergence of Y-series small molecule acceptors, polymerizing the small molecule acceptors with aromatic linker units has attracted significant research attention, which has greatly advanced the photovoltaic performance of all-polymer solar cells. Despite the rapid increase in efficiency, the unique characteristics (e. g., mechanical stretchability and flexibility) of all-polymer systems were still not thoroughly explored. In this work, we demonstrate an effective approach to simultaneously improve device performance, stability, and mechanical robustness of all-polymer solar cells by properly suppressing the aggregation and crystallization behaviors of polymerized Y-series acceptors. Strikingly, when introducing 50 wt% PYF-IT (a fluorinated version of PY-IT) into the well-known PM6:PY-IT system, the all-polymer devices delivered an impressive photovoltaic efficiency of 16.6%, significantly higher than that of the control binary cell (15.0%). Compared with the two binary systems, the optimal ternary blend exhibits more efficient charge separation and balanced charge transport accompanying with less recombination. Moreover, a high-performance 1.0 cm2 large-area device of 15% efficiency was demonstrated for the optimized ternary all-polymer blend, which offered a desirable PCE of 14.5% on flexible substrates and improved mechanical flexibility after bending 1000 cycles. Notably, these are among the best results for 1.0 cm2 all-polymer OPVs thus far. This work also heralds a bright future of all-polymer systems for flexible wearable energy-harvesting applications.   相似文献   

15.
By using photovoltaic technology, ambient solar light can be directly converted to electricity. The photovoltaic technology has been regarded as one of the most important and promising strategies to resolve the worldwide energy and pollution problems. As one type of photovoltaic technology, polymer solar cells have attracted increasing interest due to their advantages of solution processing capability, low-cost, feasibility to be fabricated on flexible substrates etc. Not until a few years ago, the fullerene derivatives had been dominated the organic photovoltaic field as the most promising acceptor materials for polymer solar cells. However, fullerene-based polymer solar cells have a power conversion efficiency bottleneck due to the relatively fixed energy levels as well as the fixed bandgaps of fullerene derivatives. Therefore, researchers started to develop nonfullerene acceptors which can be used as alternatives to replace the traditional fullerene derivatives. Compared to the fullerene derivatives, nonfullerene acceptors offer several advantages such as stronger light absorption, tunable bandgaps and frontier molecular orbital energy levels. For nonfullerene acceptors, a ladder-type fused ring is usually used as the central core which is an essential building block to tailor the bandgaps and energy levels. Although many fused ring systems have been explored for efficient nonfullerene acceptors, ladder-type angular-shape dithienonaphthalene is seldom reported as the donor unit for nonfullerene acceptors. Furthermore, the impact of thiophene bridge on the optical and photovoltaic properties of the dithienonaphthalene-based nonfullerene acceptors has never been reported. In this context, we report on the design and synthesis of a dithienonaphthalene-based small-molecule acceptor which contains thiophene bridges in between the acceptor terminals and the fused-ring donor core. Compared to the dithienonaphthalene-based small-molecule without the thiophene bridges, the resulting acceptor (DTNIT) exhibits a reduced bandgap of 1.52 eV which makes it more suitable to be blended with the benchmark large bandgap copolymer, poly[(2, 6-(4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1, 2-b: 4, 5-b']dithiophene))-alt-(5, 5-(1', 3'-di-2-thienyl-5', 7'-bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4, 8-dione)] (PBDB-T). The reduced band-gap of the resulting nonfullerene acceptor can be attributed to its extended π-conjugation in comparison with the dithienonaphthalene-based acceptor without the thiophene bridges. Inverted polymer solar cells with a device configuration of indium tin oxide/ZnO/PBDB-T:DTNIT/MoO3/Ag were fabricated and characterized. Polymer solar cells based on PBDB-T:DTNIT showed an open circuit voltage of 0.91 V, an enhanced short circuit current of 14.42 mA∙cm−2, and a moderate PCE of 7.05% which is comparable to the PCE of 7.12% for the inverted device based on PBDB-T:PC71BM. Our results not only provide a method to synthesize efficient nonfullerene acceptors with reduced bandgaps, but also offer a bandgap modulation strategy for nonfullerene acceptors.  相似文献   

16.
分别以绕丹宁和噻唑烷-2,4-二酮单元为端基、IDT为中心核设计合成了一个新型不对称结构的有机小分子受体IDT-2,并通过与两端均以绕丹宁或噻唑烷-2,4-二酮受体单元的对称小分子受体IDT-1和IDT-3进行对比,探讨了分子结构与性能之间的关系。研究发现,从IDT-1到IDT-3,随着两端的绕丹宁基团被噻唑烷-2,4-二酮基团逐步取代,这类小分子受体的吸收光谱显著蓝移,光学带隙E_g~(opt)逐步增大,LUMO和HOMO能级也逐渐抬升。随后我们分别以这三个小分子为受体、P3HT为给体共混构建活性层而制备了有机太阳能电池,结果表明,以两端均为绕丹宁单元的对称结构小分子受体IDT-1构建的电池器件具有最高的光电转换效率(PCE),相应的J_(sc)和FF值也最大,而V_(oc)则最低;而以两端均为噻唑烷-2,4-二酮基团的对称结构小分子受体IDT-3的电池器件,其V_(oc)最高,但其J_(sc)和FF则最低,PCE值也最小。对于IDT-2而言,由于分子只有一个绕丹宁单元被噻唑烷-2,4-二酮所取代,其V_(oc),J_(sc)和PCE均介于IDT-1与IDT-3之间。由此说明,尽管噻唑烷-2,4-二酮基团的引入能有效提升器件V_(oc),但却不利于改善其J_(sc)和FF,因此受体的分子设计中如何平衡电池器件的几种光伏性能参数而获得高的光电转换效率仍是十分重要的研究课题之一。  相似文献   

17.
Small molecular acceptors (SMAs) BTC‐2F and BTH‐2F, based on heptacyclic benzodi(cyclopentadithiophene) electron‐donating core (CBT) with chlorinated‐thienyl conjugated and thienyl conjugated side chains, respectively, are designed and synthesized. Compared with non‐chlorine acceptor BTH‐2F, BTC‐2F exhibits slightly blue‐shifted absorption spectra, similar the lowest unoccupied molecular orbital (LUMO) (–3.91 eV), deeper highest occupied molecular orbital (HOMO) energy level and higher electron mobility than that of BTH‐2F. PM6, a wide bandgap polymer, is selected as the donor material to construct bulk heterojunction polymer solar cells processed with nonhalogenated solvent toluene. The optimized PM6:BTC‐2F‐based device presents a 12.9% power conversion efficiency (PCE), while the PCE of PM6:BTH‐2F‐based device is only 11.3%. The results suggest that it is an effective strategy to optimize the photoelectric properties of SMAs by incorporating chlorine atom into the conjugated side chains.  相似文献   

18.
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V−1 s−1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.  相似文献   

19.
Zhu  Xian-Ming  Bao  Su-Nan  Yang  Hang  Fan  Hong-Yu  Fan  Chen-Ling  Li  Xiao-Xiao  Hu  Ke-Wei  Cao  Hao-Yu  Cui  Chao-Hua  Li  Yong-Fang 《高分子科学》2022,40(8):960-967
Chinese Journal of Polymer Science - Polymerizing the narrow bandgap small-molecule architecture with a conjugated linking unit (or called the polymerized small molecule acceptors (PSMAs)) is a...  相似文献   

20.
Thermal motion of CH4+ is investigated by performing an ab initio molecular dynamics method with the second-order M?ller-Plesset (MP2)/6-311G** force field. In the trajectories obtained at 400 K, we have observed rapid interconversion behavior of the geometrical parameters of CH4+ with the frequency of 0.6/ps, where the C-H pair forming the small angle around 55 degrees is switched to another pair on subpicosecond time scale. The switching patterns are found to be classified into the following two types. Type 1: one C-H of the small angled C-H pair is switched to one C-H of the other C-H pair. Type 2: the small angled C-H pair is switched to the other C-H pair, which has been newly observed in the present ab initio MD calculation. The four C-H bonds of CH4+ are characterized by the long and short C-H bonds in a time region of the trajectories, and also for the time-evolution of C-H bonds such interconversion behavior is observed. The switching patterns of the geometrical parameters are compared with those in the interconversion scheme between six equivalent C2v symmetry structures of CH4+ [Paddon-Row, M. N. et al., J Am Chem Soc 1985, 107, 7696]. We have also investigated the electronic energy fluctuation due to thermal motion of CH4+. The standard deviation of total electronic energy at 400 K is evaluated to be 1.2 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号