首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and structural determination of three uranium(IV) complexes bearing two, four, and six salicylaldiminate ligands. Reaction of UI4(1,4-dioxane)2 with two, four, and six equivalents of K[OC6H4C(H)=N(2,6-iPr2C6H3)], 1, yielded [(2,6-iPr2C6H3)N=C(H)C6H4O-κ2(O,N)]2UI2(NCCH3), 2, [(2,6-iPr2C6H3)N=C(H)C6H4O-κ1(O)]2[(2,6-iPr2C6H3)N=C(H)C6H4O-κ2(O,N)]2U(THF), 3, and {[2,6-iPr2C6H3)N=C(H)C6H4O-κ1(O)]6U}2?, 4. While 2 shows normal κ2-coordination through both oxygen and nitrogen donors, 3 has two salicylaldiminate ligands bound only through oxygen and 4 has all six ligands bound only through oxygen. This is an exceedingly rare example of a chelating ligand not completing its chelation in f-element chemistry. In addition, 4 is the first report of a homoleptic octahedral actinide complex with a Schiff base ligand.  相似文献   

2.
We report herein three new modes of reactivity between arylazides N3Ar with a bulky copper(I) β-diketiminate. Addition of N3ArX3 (ArX3=2,4,6-X3C6H2; X=Cl or Me) to [iPr2NN]Cu(NCMe) results in triazenido complexes from azide attack on the β-diketiminato backbone. Reaction of [iPr2NN]Cu(NCMe) with bulkier azides N3Ar leads to terminal nitrenes [iPr2NN]Cu]=NAr that dimerize via formation of a C−C bond at the arylnitrene p-position to give the dicopper(II) diketimide 4 (Ar=2,6-iPr2C6H3) or undergo nitrile insertion to give diazametallocyclobutene 8 (Ar=4-Ph-2,6-iPr2C6H2). Importantly, reactivity studies reveal both 4 and 8 to be “masked” forms of the terminal nitrenes [iPr2NN]Cu=NAr that undergo nitrene group transfer to PMe3, tBuNC, and even into a benzylic sp3 C−H bond of ethylbenzene.  相似文献   

3.
Polymerization of styrene using β‐diketiminate nickel (II) bromide complexes CH{C(R)NAr}2NiBr (R = CH3, Ar = 2,6‐iPr2C6H3, 1 ; R = CH3, Ar = 2,6‐Me2C6H3, 2 ; R = CF3, Ar = 2,6‐iPr2C6H3, 3 ; R = CF3, Ar = 2,6‐Me2C6H3, 4 ) in the presence of methylaluminoxane was studied. Compound 3 is the most active styrene polymerization catalyst of all the nickel complexes tested. The activity of these catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. Weight‐average molecular weight of the prepared polystyrene ranges from 21 000 to 72 000, with polydispersity indexes of 1.95–2.78. The microstructure of the obtained products is atactic polystyrenes from NMR analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

5.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

6.
Homo- and heteroleptic N-arylsalicylaldiminate derivatives of TiIV and ZrIV of the type, MX4–x (OC6H4CH=NAr) x (X = OPri, x = 2,3; X = Cl, x = 1,2,3,4; Ar = C6H3Me2-2,6, C6H3Et2-2,6) have been prepared by reactions in the desired molar ratios of: (i) Ti(OPri)4/Zr(OPri)4·PriOH with N-arylsalicylaldimines in benzene, and (ii) MCl4 (M = Ti, Zr) with Me3SiOC6H4CH=NAr or HOC6H4CH=NAr in the presence of Et3N as a base or the potassium salt of N-arylsalicylaldimines in benzene. The three homoleptic derivatives of CrIII, Cr(OC6H4CH=NAr)3 (Ar = C6H2Me3-2,4,6, C6H3Et2-2,6, C6H3Pri 2-2,6) have also been prepared by salt-elimination. All of these new derivatives have been characterized by elemental analyses, spectroscopic [i.r., 1H and 13C-n.m.r. (Ti and Zr complexes), and electronic (for Cr complexes)] studies, as well as molecular weight measurements.  相似文献   

7.
X-Ray Structure of [Li(tmeda)2][Zn(2,4,6- i Pr3C6H2)3] A side reaction of zinc halide containing VCl2(tmeda)2 and Li(2,4,6-iPr3C6H2) formed [Li(tmeda)2][Zn(2,4,6-iPr3C6H2)3] · 0,5[(tmeda)Li(μ-Cl)]2. The crystal structure (orthorhombic, Pbca, a = 26,226(2), b = 19,739(2), c = 27,223(5) Å, Z = 8, R = 0,062, wR2 = 0,154) contains trigonal planar zinc anions with Zn–C distances of 2,039(7) Å (average) and a propeller like arrangement of the aryl rings.  相似文献   

8.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

9.
Divergent reactivity of organometallic rhodium(I) complexes, which led to the isolation of neutral rhodium silylenes, is described. Addition of PhRSiH2 (R=H, Ph) to the rhodium cyclooctene complex (iPrNNN)Rh(COE) (1-COE; iPrNNN=2,5-[iPr2P=N(4-iPrC6H4)]2N(C6H2), COE=cyclooctene) resulted in the oxidative addition of an Si−H bond, providing rhodium(III) silyl hydride complexes (iPrNNN)Rh(H)SiHRPh (R=H, 2 -SiH2Ph; Ph, 2 -SiHPh2). When the carbonyl complex (iPrNNN)Rh(CO) ( 1 -CO) was treated with hydrosilanes, base-stabilized rhodium(I) silylenes κ2-N,N-(iPrNNN)(CO)Rh=SiRPh (R=H, 3 -SiHPh; Ph, 3 -SiPh2) were isolated and characterized using multinuclear NMR spectroscopy and X-ray crystallography. Both silylene species feature short Rh−Si bonds [2.262(1) Å, 3 -SiHPh; 2.2702(7) Å, 3 -SiPh2] that agree well with the DFT-computed structures. The overall reaction led to a change in the iPrNNN ligand bonding mode (κ3→κ2) and loss of H2 from PhSiRH2, as corroborated by deuterium labelling experiments.  相似文献   

10.
李悦生 《高分子科学》2011,29(5):627-633
Mono salicylaldiminato vanadium(Ⅲ) complexes(1a-1f)[RN = CH(ArO)]VCl2(THF)2(Ar = C6H4(1a-1e),R = Ph,1a;R = p-CF3Ph,1b;R = 2,6-Me2Ph,1c;R = 2,6-iPr2Ph,1d;R = cyclohexyl,1e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph, 1f) and bis(salicylaldiminato) vanadium(Ⅲ) complexes(2a-2f)[RN = CH(ArO)]2VCl(THF)x(Ar = C6H4(2a-2e),x = 1 (2a-2e),R = Ph,2a;R =p-CF3Ph,2b;R = 2,6-Me2Ph,2c;R = 2,6-iPr2Ph,2d;R = cyclohexyl,2e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph,x = 0,2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2AlCl.The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity,the molecular weight and molecular weight distribution of the copolymers etc.The highest catalytic activity of 8.82 kg PE/(mmolV·h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands.The copolymer with the highest molecular weight was obtained by using mono salicylaldiminato vanadium catalyst 1f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.  相似文献   

11.
Extremely bulky terphenyltriselanes RSeSeSeR with R = 2,6‐(2,4,6‐Me3C6H2)2C6H3 and 2,6‐(2,4,6‐iPr3C6H2)2C6H3 were prepared. The chlorination with sulfuryl chloride resulted in the formation of the corresponding selenenyl chlorides RSeCl. In the case of the methyl substituted derivative, also a chlorination of the mesityl groups was observed and the derivative could be isolated. The molecular structure of the isopropyl substituted triselane [2,6‐(2,4,6‐iPr3C6H2)2C6H3Se]2Se and that of 2,6‐(2,4,6‐Me3C6Cl2)2C6H3SeCl, have been determined by X‐Ray diffraction.  相似文献   

12.
New Aminometalanes of Aluminum and Gallium The reaction of secondary amines R′RNH with trimethyaluminum leads to the formation of dimeric aminoalanes [RR′NAlMe2]2 ( 1 ) (R = 2,6-Me2C6H3, R′ = SiMe2(2,4,6-Me3C6H2)) and 2 (R = Ph, R′ = SiMe3). Using a different stoichiometric ratio, a monomeric aminoalane [RR′N]2AlMe ( 3 ) (R = Ph, R′ = SiPh2Me) is obtained, having an aluminum atom of coordination number three due to the steric demand of the substituents. The synthesis of the corresponding aminogallanes 4 , 5 and 6 is achieved by reaction of lithium amides LiNRR′ (R = Ph, 2,6-iPr2C6H3; R′ = SiMe3, SiMe2iPr) with dimethylgalliumchloride, Me2GaCl, in n-hexane. The formation of the dimeric species is in 1 through carbon while that in 2 and 3 is formed through nitrogen. The X-ray single crystal structure analysis of 1 , 2 , 3 and 4 are reported.  相似文献   

13.
Herein we report the employment of the quintuply bonded dichromium amidinates [Cr{κ2‐HC(N‐2,6‐iPr2C6H3)(N‐2,6‐R2C6H3)}]2 (R=iPr ( 1 ), Me ( 7 )) as catalysts to mediate the [2+2+2] cyclotrimerization of terminal alkynes giving 1,3,5‐trisubstituted benzenes. During the catalysis, the ultrashort Cr−Cr quintuple bond underwent reversible cleavage/formation, corroborated by the characterization of two inverted arene sandwich dichromium complexes (μ‐η66‐1,3,5‐(Me3Si)3C6H3)[Cr{κ2‐HC(N ‐2,6‐iPr2C6H3)(N ‐2,6‐R2C6H3)}]2 (R=iPr ( 5 ), Me ( 8 )). In the presence of σ donors, such as THF and 2,4,6‐Me3C6H2CN, the bridging arene 1,3,5‐(Me3Si)3C6H3 in 5 and 8 was extruded and 1 and 7 were regenerated. Theoretical calculations were employed to disclose the reaction pathways of these highly regioselective [2+2+2] cylcotrimerization reactions of terminal alkynes.  相似文献   

14.
Treatment of the chlorides (L2,6‐iPr2Ph)2LnCl (L2,6‐iPr2Ph = [(2,6‐iPr2C6H3)NC(Me)CHC(Me)N(C6H5)]?) with 1 equiv. of NaNH(2,6‐iPr2C6H3) afforded the monoamides (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Y ( 1 ), Yb ( 2 )) in good yields. Anhydrous LnCl3 reacted with 2 equiv. of NaL2,6‐iPr2Ph in THF, followed by treatment with 1 equiv. of NaNH(2,6‐iPr2C6H3), giving the analogues (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Sm ( 3 ), Nd ( 4 )). Two monoamido complexes stabilized by two L2‐Me ligands, (L2‐Me)2LnNH(2,6‐iPr2C6H3) (L2‐Me = [N(2‐MeC6H4)C(Me)]2CH)?; Ln = Y ( 5 ), Yb ( 6 )), were also synthesized by the latter route. Complexes 1 , 2 , 3 , 4 , 5 , 6 were fully characterized, including X‐ray crystal structure analyses. Complexes 1 , 2 , 3 , 4 , 5 , 6 are isostructural. The central metal in each complex is ligated by two β‐diketiminato ligands and one amido group in a distorted trigonal bipyramid. All the complexes were found to be highly active in the ring‐opening polymerization of L‐lactide (L‐LA) and ε‐caprolactone (ε‐CL) to give polymers with relatively narrow molar mass distributions. The activity depends on both the central metal and the ligand (Yb < Y < Sm ≈ Nd and L2‐Me < L2,6‐iPr2Ph). Remarkably, the binary 3/benzyl alcohol (BnOH) system exhibited a striking ‘immortal’ nature and proved able to quantitatively convert 5000 equiv. of L‐LA with up to 100 equiv. of BnOH per metal initiator. All the resulting PLAs showed monomodal, narrow distributions (Mw/Mn = 1.06 ? 1.08), with molar mass (Mn) decreasing proportionally with an increasing amount of BnOH. The binary 4/BnOH system also exhibited an ‘immortal’ nature in the polymerization of ε‐CL in toluene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
(Arylimido)vanadium(V) complexes containing anionic ancillary donor ligands of type, V(NAr)Cl2(L) (Ar = 2,6-Me2C6H3, L = aryloxo, ketimide phenoxyimine, etc.) exhibited high catalytic activities for ethylene polymerization in the presence of Al cocatalyst; V(NAr)Cl2(O-2,6-Me2C6H3) showed the exceptionally high activities in the presence of halogenated Al alkyls such as Et2AlCl, EtAlCl2, etc. (Arylimido)vanadium(V)-alkylidene complexes, V(CHSiMe3)(NAr)(L′) (L′ = N=C t Bu2, O-2,6- i Pr2C6H3) exhibited the remarkable catalytic activities for ring-opening metathesis polymerization of norbornene. (Imido)vanadium(V) complexes containing the (2-anilidomethyl)pyridine ligand, V(NR)Cl2[2-Ar′NCH2(C5H4N)] (R = 1-adamantyl, cyclohexyl, phenyl, Ar′ = 2,6-Me2C6H3, 2,6- i Pr2C6H3), exhibit the remarkable activities for ethylene dimerization in the presence of MAO, affording 1-butene exclusively (selectivity 90.4 to >99%). The steric bulk of the imido ligand plays an important role in the selectivity, and the electronic nature directly affects the activity.  相似文献   

16.
Norbornene polymerizations were carried out using nickel(II) bromide complexes CH{C(R)NAr}2NiBr ( 1 , R = CH3, Ar = 2, 6 ? iPr2C6H3; 2 , R = CH3, Ar = 2, 6‐Me2C6H3; 3 , R = CF3, Ar = 2, 6 ? iPr2C6H3; 4 , R = CF3, Ar = 2, 6‐Me2C6H3) in the presence of methylaluminoxane. Compound 3 is the most active norbornene polymerization catalyst of all the nickel complexes tested. The activity of theses catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. The resulting polynorbornenes are vinyl type by IR and NMR analyses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The addition of 1 equiv of KSCPh3 to [LRNiCl] (LR={(2,6‐iPr2C6H3)NC(R)}2CH; R=Me, tBu) in C6H6 results in the formation of [LRNi(SCPh3)] ( 1 : R=Me; 2 : R=tBu) in good yields. Subsequent reduction of 1 and 2 with 2 equiv of KC8 in cold (?25 °C) Et2O in the presence of 2 equiv of 18‐crown‐6 results in the formation of “masked” terminal NiII sulfides, [K(18‐crown‐6)][LRNi(S)] ( 3 : R=Me; 4 : R=tBu), also in good yields. An X‐ray crystallographic analysis of these complexes suggests that they feature partial multiple‐bond character in their Ni? S linkages. Addition of N2O to a toluene solution of 4 provides [K(18‐crown‐6)][LtBuNi(SN?NO)], which features the first example of a thiohyponitrite (κ2‐[SN?NO]2?) ligand.  相似文献   

18.
Heterobimetallic Phosphanido-bridged Dinuclear Complexes - Syntheses of cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] (R?Me, M?Cr, Mo; R?H, M?Mo) The zirconocene bisphosphanido complexes [(η-C5H4R)2Zr{PH(2,4,6-iPr3C6H2)}2] (R?Me, H) react with [(NBD)M(CO)4] (NBD?norbornadiene, M?Cr, Mo) to give only one diastereomer of the phosphanido-bridged heterobimetallic dinuclear complexes cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] [R?Me, M?Cr ( 1 ), Mo ( 2 ); R?H, M?Mo ( 3 )]. However, no reaction was observed between [(η-C5H5)2Zr{PH(2,4,6-tBu3 C6H2)}2] and [Pt(PPh3)4]. 1—3 were characterised spectroscopically. For 1—3 , the presence of the racemic isomer was shown by NMR spectroscopy. No reaction was observed at room temperature for 3 and CS2, (NO)BF4, Me3NO or PH(2,4,6-Me3C6H2)2. With Et2AlH or PhC?CH decomposition of 3 was observed.  相似文献   

19.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

20.
A series of cationic rare‐earth aryloxide complexes, i.e., [LREOAr']+[B(C6F5)4] (L = CH3C(NAr)CHC(CH3)(NCH(R)CH2PPh2); RE = Y, Lu; Ar' =2,6‐tBu2‐C6H3, 2,6‐(PhCMe2)2‐4‐Me‐C6H2; Ar = 2,6‐iPr2‐C6H3, 2,6‐(Ph2CH)2‐4‐iPr‐C6H2; R = H, CH3, iPr, Ph), were prepared and applied to the Lewis pair polymerization of methyl methacrylate (MMA). The stereoregularity of the resulting PMMA was significantly affected by the R substituent on the pendant arm of the tridentate NNP ligand, and was found to increase with increase in the steric hindrance of R. When using a Ph group as R, the Y complex produced a highly isotactic polymer with an mm value of 95% and a Tg of 54.6 oC. In contrast, the steric hindrance of the Ar and Ar' groups had no effect on the tacticity of the resulting polymer, presumably because these two substituents were situated such that they pointed outward from the cyclic intermediates. Kinetics studies demonstrated that the polymerization was a first‐order process with regard to the monomer concentration prior to catalyst deactivation. End group analysis indicated that the polymerization was accompanied by two possibly competing chain‐termination side reactions that proceeded via intramolecular backbiting cyclization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号