首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of metal–organic frameworks (MOFs) in the field of catalysis is discussed, and special focus is placed on their assets and limits in light of current challenges in catalysis and green chemistry. Their structural and dynamic features are presented in terms of catalytic functions along with how MOFs can be designed to bridge the gap between zeolites and enzymes. The contributions of MOFs to the field of catalysis are comprehensively reviewed and a list of catalytic candidates is given. The subject is presented from a multidisciplinary point of view covering solid‐state chemistry, materials science, and catalysis.  相似文献   

2.
《中国化学快报》2022,33(12):5013-5022
Metal-organic frameworks (MOFs) materials with highly ordered and porous crystalline structure, have excellent performance in advanced oxidation progresses (AOPs) for organic contaminants degradation in water treatment. This review intends to summarize the timely references and insights for the recent advances in MOFs that are used in AOPs. Starting with the preparation methodologies, including conventional hydrothermal method, electrochemical method, sol-gel method, and emerging microwave and ultrasound assisted synthesis methods. Application and mechanism for MOFs using in various AOPs of Fenton-like, photocatalysis, catalytic ozonation, persulfate catalysis and other emerging oxidation methods are emphatically discussed. We hope this review can comprehensively summarize the research and application progress of MOFs in AOPs, deepen the understanding of the catalytic mechanisms.  相似文献   

3.
Metal–organic frameworks (MOFs) have become one of the versatile solid materials used for a wide range of applications, such as gas storage, gas separation, proton conductivity, sensors and catalysis. Among these fields, one of the more well-studied areas is the use of MOFs as heterogeneous catalysts for a broad range of organic reactions. In the present review, the employment of MOFs as solid catalysts for the Henry reaction is discussed, and the available literature data from the last decade are grouped. The review is organized with a brief introduction of the importance of Henry reactions and structural properties of MOFs that are suitable for catalysis. The second part of the review discusses the use of MOFs as solid catalysts for the Henry reaction involving metal nodes as active sites, while the third section provides data utilizing basic sites (primary amine, secondary amine, amides and urea-donating sites). While commenting on the catalytic results in these two sections, the advantage of MOFs over other solid catalysts is compared in terms of activity by providing turnover number (TON) values and the structural stability of MOFs during the course of the reaction. The final section provides our views on further directions in this field.  相似文献   

4.
5.
陈莲芬  莫炜娴  刘秋仪  康健 《化学通报》2023,86(8):916-922,907
金属有机骨架材料(MOFs)作为异相催化剂受到了日益广泛的关注。在众多经典MOFs结构中,HKUST-1及其衍生材料是研究最多的类型之一。HKUST-1具有原料简单、易于合成、结构稳定、孔隙率高等多种优点,在异相催化领域中具有广阔的应用前景。已有多种HKUST-1相关材料被用作催化剂,包括HKUST-1本身、缺陷型结构、负载活性客体分子的复合型材料以及HKUST-1衍生的多孔碳纳米材料等。本文围绕HKUST-1作为催化剂的结构设计以及在不同催化反应中的应用展开总结与介绍,以期为相关MOFs材料的设计和催化研究提供一定参考。  相似文献   

6.
Metal-organic frameworks(MOFs)-based nanozyme plays an important role in biosensing,therapy and catalysis.In this study,the effects of single-stranded DNA(ssDNA)with programmable sequences and its complementary DNA(Tdna)on the intrinsic peroxidase-like activity of hemin loaded MOFs(UiO-66-NH2),denoted as he-min@UiO-66-NH2,were investigated.The hemin@UiO-66-NH2 exhibited improved catalytic activity compared with free hemin.However,the catalytic activity is inhibited in the presence of ssDNA,as ssDNA can be adsorbed by MOFs and therefore protected the active sites from contact with substrates.Upon the addition of the TDNA,double-stranded DNA(dsDNA)was formed and detached from the MOFs,resulting in the recovery of catalytic activity.Sequentially adding ssDNA or its complementary DNA strands can achieve the reversible regulation of the catalytic activity of MOFs nanozymes.Moreover,the DNA hybridization-based regulation was further applied to a cascaded catalytic system composed of the nanozyme,hemin@UiO-66-NH2,and glucose oxidase.These nanozyme based programmable and reversibly regulated catalytic systems may have potential applications in future smart biosensing and catalysis systems.  相似文献   

7.
Metal–organic frameworks (MOFs) are a class of crystalline porous materials that have been actively used for several industrial and synthetic applications. MOFs are spatially and geometrically extrapolated coordination polymers with intriguing properties such as tunable porosity and dimensionality. In terms of their catalytic efficiency, MOFs combine the easy recoverability of heterogeneous catalysts with the increased selectivity of biological catalysts. It is therefore not surprising that a lot of work on optimizing MOF catalysts for organic transformations has been carried out over the past decade. In this review, recent developments in MOF catalysis are summarized, with special attention being paid to C−C, C−N, and C−O coupling reactions. The influence of pore size, pore environment, and load on catalytic activity is described. Post-synthetic stabilization techniques and host–guest interactions in caged MOF scaffolds are detailed. Mechanistic aspects pertaining to the use of MOFs in asymmetric heterogeneous catalysis are highlighted and categorized.  相似文献   

8.
A nuclearity-dependent enantiodivergent epoxide opening reaction has been developed, in which both antipodes of chiral alcohol products are selectively accessed by mononuclear (salen)TiIII complex and its self-assembled oxygen-bridged dinuclear counterparts within the same stereogenic ligand scaffold. Kinetic studies based on the Eyring equation revealed an enthalpy-controlled enantio-differentiation mode in mononuclear catalysis, whereas an entropy-controlled one in dinuclear catalysis. DFT calculations outline the origin of the enantiocontrol of the mononuclear catalysis and indicate the actual catalyst species in the dinuclear catalytic system. The mechanistic insights may shed a light on a strategy for stereoswichable asymmetric catalysis utilizing nuclearity-distinct transition-metal complexes.  相似文献   

9.
Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion‐pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction.  相似文献   

10.
The results of theoretical, experimental investigations on activation of small molecules on their coordination to cluster complexes of heavy transition metals with weak- and strong-field ligands are presented. Homogeneous catalytic redox reactions of the CO, N2, H2O molecules and the N3 - molecular anion in the presence of cluster complexes of low-valent molybdenum and rhenium are studies. The reaction mechanism is established. Three modifications of the homogeneous cluster catalysis of redox reactions of small molecules are described.  相似文献   

11.
陈莲芬  兴旺  康健 《化学通报》2022,85(5):553-559
炔烃的半氢化反应在有机合成和精细化工领域具有重要地位,如何同时兼顾反应活性和选择性仍存在很大挑战。目前已有多种材料被应用于相关催化,其中金属-有机骨架(MOFs)及其复合材料受到越来越多关注。MOFs的多孔性、结构可修饰性、空间限域效应、协同催化等优点,使其在炔烃的半氢化反应中表现出独特的应用前景。本文综述了MOFs及其复合材料在炔烃的半氢化反应生成烯烃过程中的应用,主要根据活性催化位点的类别展开介绍,重点阐述了不同体系中催化效果和结构之间的关系。  相似文献   

12.
金属-有机骨架材料及其在催化反应中的应用   总被引:2,自引:0,他引:2  
李庆远  季生福  郝志谋 《化学进展》2012,24(8):1506-1518
金属-有机骨架(metal-organic frameworks, MOFs)材料是由金属离子和有机配体通过自组装而成的具有多孔结构的特殊晶体材料。由于其种类的多样性、孔道的可调性和结构的易功能化,已在气体的吸附和分离、催化、磁学、生物医学等领域表现出了诱人的应用前景。本文介绍了MOFs材料的类型和常用的合成方法,综述了近年来MOFs材料在催化领域的应用,特别是以MOFs材料中骨架金属作为活性中心、骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFs材料的催化应用趋势做了展望,以期对MOFs材料的催化性能有比较全面的认识。  相似文献   

13.
The intent of this Dalton Perspective is to highlight the recent advances in uranium molecular chemistry, with the results reported during the 2000-2006 period. This discipline is currently witnessing an impressive development, together with the theoretical chemistry and solid-state chemistry of the f-elements, and its face has profoundly changed, revealing unsuspected structural and reactivity features. This progress required and was facilitated by the use of new precursors. Studies of low-valent compounds gave a better insight into lanthanide(III)/actinide(III) differentiation and led to the discovery of unusual reactions, including activation of small molecules. A number of tetravalent uranium complexes, in particular polynuclear compounds, have been synthesized, which exhibit exciting structures and physicochemical properties. The potential of uranium(III) and uranium(IV) complexes in catalysis has been confirmed. The uranyl complexes, from mononuclear species to supramolecular assemblies, reveal a variety of novel structures, changing the generally accepted ideas on the coordination geometry and the stability of the UO2(2+) ion.  相似文献   

14.
Catalysis is one of the key techniques for people's modern life. It has created numerous essential chemicals such as biomedicines, agricultural chemicals and unique materials. Heterogeneous catalysis is the new emerging method with reusable catalysts. Among heterogenous catalysis patterns developed so far, single crystalline catalysis has become the promising one owing to its high catalytic density and selectivity resulted by the inherent porosity, orderliness of the lattices and permeability. These crystalline catalysts could be used in various reactions such as photo-dimerization, Diels-Alder reaction, CO2 transformation and so on. In this review, we highlighted the reported works about the single crystalline catalysts. Both discrete small molecules and metal-organic frameworks (MOFs) have been used to prepare single crystals for catalysis. For discrete molecules based crystalline catalysts, coordinated and covalent molecules have been used. There were more catalytic modes in crystalline MOF catalysts. Three patterns were identified in this review: single crystalline MOFs i) without catalytic sites, ii) with inherent catalytic features and iii) with introducing catalytic units by post synthetic modification. Based on these examples, this review committed to provide the inspirations for the further design and application of single crystalline materials.  相似文献   

15.
Metal-organic frameworks (MOFs) are a kind of material which are able to integrate functional groups on their framework backbones. The tunable functionalities let MOFs be applied in various fields of luminescence, gas storage, sensing, magnetics, catalysis and biomedical imaging. Because of their interesting properties of structural robustness, catalysis, charge and energy transformations, using porphyrins and metalloporphyrins as synthons for the fabrication of functional MOFs has attracted considerable interest. Many efficient strategies have been established for the construction of functional porphyrinic MOFs, and some of them present interesting properties for potential applications. This perspective is aimed to summarize recent progress on porphyrinic MOFs, including new synthesis strategies and applications.  相似文献   

16.
陈莲芬  林怡涵  冯嘉俊  唐青 《化学通报》2021,84(12):1323-1327
作为一类具有大的比表面积、高孔隙率、合成方便、骨架规模可变、化学可修饰以及结构组成多样等优点的新型多孔材料,金属-有机框架(MOFs)在光电材料、药物传输、气体吸附分离及催化等领域有着广阔的应用前景,成为近年来研究的热点。异相催化是MOFs最具发展潜力的应用领域之一,各种表征方法和研究手段是开展MOFs异相催化研究的工作基础。本文主要围绕表征MOFs作为异相催化剂的常用技术手段进行介绍,包括X-射线单晶衍射、X-射线粉末衍射、热重分析、红外光谱/拉曼光谱分析、透射/扫描电镜等,旨在为开展相关MOFs催化研究提供一定参考。  相似文献   

17.
Crystalline porous materials are extremely important for developing catalytic systems with high scientific and industrial impact. Metal-organic frameworks (MOFs) show unique potential that still has to be fully exploited. This perspective summarizes the properties of MOFs with the aim to understand what are possible approaches to catalysis with these materials. We categorize three classes of MOF catalysts: (1) those with active site on the framework, (2) those with encapsulated active species, and (3) those with active sites attached through post-synthetic modification. We identify the tunable porosity, the ability to fine tune the structure of the active site and its environment, the presence of multiple active sites, and the opportunity to synthesize structures in which key-lock bonding of substrates occurs as the characteristics that distinguish MOFs from other materials. We experience a unique opportunity to imagine and design heterogeneous catalysts, which might catalyze reactions previously thought impossible.  相似文献   

18.
Multi-functional sites MOFs have been explored as a new type of heterogeneous catalytic materials, which can be constructed by various post-synthetic modifications.  相似文献   

19.
金属有机骨架材料(MOFs)具有拓扑结构的多样性和丰富的比表面积,使其在催化和吸附领域具有潜在的应用价值。 双金属MOFs具有两种金属中心,较之单金属MOFs具有更加多元的催化活性位点和吸附位点,因此吸附选择性、选择催化性以及结构稳定性等均得到了提升。 本文就如何制备性能优异的双金属MOFs材料,以及这种材料的结构特点、性能提升和应用前景展开了概述。  相似文献   

20.
Metal organic frameworks (MOFs) with their high pore volumes and chemically-diverse pore environments have emerged as components of catalytic electrodes for biosensors, biofuel cells, and bioreactors. MOFs are widely exploited for gas capture, separations, and catalysis, but their integration at electrodes with biocatalysts for (bio)electrocatalysis is a niche topic that remains largely unexplored. This review focuses on recent advances in MOF and MOF-derived carbon electrodes for bioelectrochemical applications. A range of MOF materials and their integration into devices with enzymes and microbes are reported. Key properties and performance characteristics are considered and opportunities facing MOFs for (bio)electrochemical applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号