首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.  相似文献   

2.
Chain-transfer processes represent highly effective chemical means to achieve selective, in situ d- and f-block-metal catalyzed functionalization of polyolefins. A diverse variety of electron-poor and electron-rich chain-transfer agents, including silanes, boranes, alanes, phosphines, and amines, effect efficient chain termination with concomitant carbon-heteroelement bond formation during single-site olefin-polymerization processes. High polymerization activities, control of polyolefin molecular weight and microstructure, and selective chain functionalization are all possible, with distinctly different mechanisms operative for the electron-poor and electron-rich reagents. A variety of metal centers (early transition metals, lanthanides, late transition metals) and single-site ancillary ligand arrays (metallocene, half-metallocene, non-metallocene) are able to mediate these selective chain-termination/functionalization processes.  相似文献   

3.
Chelating diphosphines were constructed using dinuclear Zn(II) complexes of Robson macrocycles (Zn-RMCs) as templates. The assembly process is driven by the interaction between the metal centers (Lewis acids) with anionic and neutral Lewis base-functionalized monophosphines. The stability of the final structure depends on the geometry and the affinity of the functional groups of the ditopic phosphines and on the structure of the RMC. In the free ligand the ditopic phosphines coordinate at opposite faces of the pseudo-planar macrocycle as is shown in the molecular structure of several of the assemblies, according to X-ray diffraction. Pre-organization of the system by coordinating the phosphorus atoms to a transition metal center enforced coordination of the functional groups at the same face of the RMC. For several templated diphosphines cis-PtCl(2) complexes were identified by NMR. The in situ assembled diphosphines showed a chelating effect in the rhodium catalyzed hydroformylation of 1-octene. Combination of Zn-RMC 3 and phosphine A gave the highest l/b ratio (13) in acetonitrile.  相似文献   

4.
Metal–ligand complexation at surfaces utilizing redox-active ligands has been demonstrated to produce uniform single-site metals centers in regular coordination networks. Two key design considerations are the electron storage capacity of the ligand and the metal-coordinating pockets on the ligand. In an effort to move toward greater complexity in the systems, particularly dinuclear metal centers, we designed and synthesized tetraethyltetra-aza-anthraquinone, TAAQ, which has superior electron storage capabilities and four ligating pockets in a diverging geometry. Cyclic voltammetry studies of the free ligand demonstrate its ability to undergo up to a four-electron reduction. Solution-based studies with an analogous ligand, diethyldi-aza-anthraquinone, demonstrate these redox capabilities in a molecular environment. Surface studies conducted on the Au(111) surface demonstrate TAAQ′s ability to complex with Fe. This complexation can be observed at different stoichiometric ratios of Fe:TAAQ as Fe 2p core level shifts in X-ray photoelectron spectroscopy. Scanning tunneling microscopy experiments confirmed the formation of metal–organic coordination structures. The striking feature of these structures is their irregularity, which indicates the presence of multiple local binding motifs. Density functional theory calculations confirm several energetically accessible Fe:TAAQ isomers, which accounts for the non-uniformity of the chains.  相似文献   

5.
X-ray absorption spectroscopy at the Cr K- and L(2,3)-edges was used to study the assembling process of a heterogeneous Cr-based single-site catalyst. The starting point was a Phillips-type system with monochromate species anchored on a silica surface, which was first reduced to a variety of different surface Cr(II) species. The reduced sample was modified with a 1,3,5-tribenzylhexahydro 1,3,5-triazine (TAC) ligand in the presence of CH(2)Cl(2) as solvent to yield a heterogeneous single-site Cr-based catalyst active in the trimerization of ethylene. The molecular structure of the resultant catalytic material consists of distorted octahedral Cr(III) species. The extended X-ray absorption fine-structure (EXAFS) spectroscopy fitting procedure in R space up to 2.5 A showed that the synthesis leads to coordination with a TAC ligand. The fit also shows that it was possible to complete the six-fold environment around Cr(III) with two oxygen atoms and one chloride ligand. This chloride ligand is formed in a redox process from the solvent and is responsible for the oxidation of surface Cr(II) to Cr(III). The obtained geometry and the local environment of the surface complex are discussed in light of its homogeneous counterpart and confirm the single-site characteristics of the prepared catalytic material.  相似文献   

6.
When early transition metal complexes are molecularly grafted onto catalyst supports, well-defined, surface-bound species are created, which are highly active and selective single-site heterogeneous catalysts (SSHCs) for diverse chemical transformations. In this minireview, we analyze and summarize a less conventional type of SSHC in which molybdenum dioxo species are grafted onto unusual carbon-unsaturated scaffolds, such as activated carbon, reduced graphene oxide, and carbon nanohorns. The choice of earth-abundant, low-toxicity, versatile metal constituents, and various carbon supports illustrates “catalyst by design” principles and yields insights into new catalytic systems of both academic and technological interest. Here, we summarize experimental and computational investigations of the bonding, electronic structure, reaction scope, and mechanistic pathways of these unusual catalysts.  相似文献   

7.
This review discusses the principles underlying mononucleating N-heterocyclic ligand design, selectivity of metal centers, preparation of organometallic catalysts with a N-heterocyclic backbone, and their catalytic activity in olefin oligo/polymerization. A vast number of N-heterocyclic organometallic compounds have been applied for the polymerization on account of their modest cost, low toxicity, and the large availability of transition metals in stable and variable oxidation states, which makes them versatile precursors for these reactions. The main points of focus in this review are the key advances made over more the past 25 years in the design and development of non-metallocene single-site organometallic catalysts bearing different N-heterocyclic scaffolds as a backbone. These catalysts are applied as precursors for the transformation of ethylene, higher α-olefins, and cyclic olefins into oligo/polymers. Emphasis is placed on the architecture of ligand peripheries for tuning the formed polymer properties and the consequences on product formation of different alkyl or aryl substituents directly attached to the metal center in a N-heterocyclic ligand system.  相似文献   

8.
Encapsulated transition metal catalysts are presented that are formed by templated self-assembly processes of simple building blocks such as porphyrins and pyridylphosphine and phosphite ligands, using selective metal-ligand interactions. These ligand assemblies coordinate to transition metals, leading to a new class of transition metal catalysts. The assembled catalyst systems were characterized using NMR and UV-vis spectroscopy and were identified under catalytic conditions using high-pressure infrared spectroscopy. Tris-3-pyridylphosphine binds three mesophenyl zinc(II) porphyrin units and consequently forms an assembly with the phosphorus donor atom completely encapsulated. The encapsulated phosphines lead exclusively to monoligated transition metal complexes, and in the rhodium-catalyzed hydroformylation of 1-octene the encapsulation of the catalysts resulted in a 10-fold increase in activity. In addition, the branched aldehyde was formed preferentially (l/b = 0.6), a selectivity that is highly unusual for this substrate, which is attributed to the encapsulation of the transition metal catalysts. An encapsulated rhodium catalyst based on ruthenium(II) porphyrins and tris-meta-pyridyl phosphine resulted in an even larger selectivity for the branched product (l/b = 0.4). These encapsulated catalysts can be prepared easily, and various template ligands and porphyrins, such as tris-3-pyridyl phosphite and ruthenium(II) porphyrins, have been explored, leading to catalysts with different properties.  相似文献   

9.

The present review covers the outline of the application of photoluminescence (PL) spectroscopy to understand the photocatalytic reactions on the bulk semiconducting materials and highly dispersed metal oxide single-site heterogeneous catalysts at their working states. The first part focuses on the applications of PL spectroscopy to elucidate the surface active sites and surface band structures of the inorganic and organic bulk semiconducting photocatalysts at their working states. The second part describes the applications of in situ PL spectroscopy to elucidate the surface active sites of the highly dispersed metal oxide single-site heterogeneous catalysts and their roles in photocatalytic reactions at the molecular level. The last part is a brief conclusion and future direction of PL studies.

  相似文献   

10.
超薄金属-有机框架材料(MOFs)纳米片具有高密度、 易暴露的表面活性位点、 较短的底物/产物扩散路径等特点, 是性能优异的异相催化剂. 本文以光活性有机配体(H4TBAPy)和镧系金属离子Sm3+构筑光活性超薄MOFs纳米片, 以苯甲酸作为调节剂, 利用微波法快速合成了Sm-TBAPy二维纳米片. 利用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线衍射(XRD)、 紫外-可见漫反射光谱(UV-Vis DRS)、 傅里叶变换红外光谱(FTIR)和氮气吸附-脱附等手段表征了Sm-TBAPy二维纳米片的形貌、 结构和组成. 所合成的Sm-TBAPy为单分散二维纳米片, 宽度约为200 nm, 厚度约为12 nm, BET比表面为163 m2/g, 禁带宽度为2.62 eV. Sm-TBAPy二维纳米片在室温、 氧气氛围和可见光照射条件下, 可将芥子气模拟剂[2-氯乙基乙基硫醚(CEES)]高效、 高选择性氧化成亚砜产物CEESO, 且催化剂经过4次循环使用仍保持较高的催化性能. 结合电子顺磁共振波谱, 提出了Sm-TBAPy二维纳米片可见光催化氧化CEES的催化机理.  相似文献   

11.
A straightforward route for the preparation of a set of bis(cyclopropenium)‐substituted phosphines is reported. Due to their dicationic nature, these ligands depict an excellent π‐acceptor character. The effect of the ligand substituent pattern on the catalytic activity of the metal complexes thereof derived is also studied. Whereas sterically demanding biaryl groups directly attached to the phosphorus atom seem to facilitate elementary steps such as the product release from the catalyst, long chain dialkylamino groups on the cyclopropenium units maximize the catalysts solubility and, thus, allow the use of typical apolar solvents such as toluene. Importantly, all new ligands prepared can be easily handled in air. Finally, the impact of the newly prepared dicationic phosphines in hydroarylation reactions is demonstrated. In particular, their use in the synthesis of several naphtho[1,2‐b]furanes and naturally occurring naphthalene derivatives such as Calanquinone C is reported.  相似文献   

12.
Achiral and chiral linear trisphenol analogues of calixarene (HOArCH(2)Ar'(OH)C(R)HArOH, Ar = 4,6-di-tert-butylphenyl; Ar' = 4-tert-butylphenyl; R = H (achiral), Me (chiral)) were prepared in anticipation of their adoption of a chiral conformation upon coordination to Lewis acidic metal centers. The trisphenols react with 1 equiv of Ti(OR')(4) (R' = i-Pr or t-Bu) to yield complexes with molecular formula Ti(2)(OArCH(2)Ar'(O)C(R)HArO)(2)(OR')(2) (R = H, Me; R' = i-Pr or t-Bu). An X-ray crystal structure of the titanium complex of the achiral trisphenol (R = H; R' = t-Bu) reveals that the trisphenolate ligand adopts an unsymmetrical (and therefore chiral) conformation, with eta(2)-coordination to one metal center and eta(1)-coordination to the second metal center. The chiral trisphenol, which contains a stereogenic center (indicated as C in the shorthand notation used above), coordinates titanium in an analogous fashion to produce only one diastereomer (out of four possible); therefore, the configuration of the stereogenic center controls the conformation adopted by the bound ligand. The reaction of achiral trisphenol with AlMe(3) produces a compound with molecular formula Al(2)(OArCH(2)Ar'(O)CH(2)ArO)(2). (1)H NMR spectroscopy and X-ray crystallography reveal that the trisphenolate ligand adopts an asymmetric, C(2) conformation in this complex, where the central phenolate oxygen bridges the aluminum centers and the terminal phenolate oxygens each coordinate a separate aluminum center. Because these trisphenolate ligands adopt chiral conformations when coordinated to metal centers, they may be useful for developing diastereo- or enantioselective catalysts and reagents.  相似文献   

13.
Control of coordination modes of a ligand in metal complexes is significant because the coordination modes influence catalytic properties of transition metal catalysts. Reactions of 2-diphenylphosphinoazobenzenes, which are in equilibrium with the inner phosphonium salts, with ZnCl(2), W(CO)(5)(THF), and PtCl(2)(cod) gave three different coordination types of metal complexes with distinctive UV-vis absorptions. All the complexes were characterized by X-ray crystallographic analyses. In the zinc and tungsten complexes, the source molecule functions as an amide ligand and a phosphine ligand, respectively. In the platinum complex, the phosphorus molecule works as a tridentate ligand with formation of a carbon-platinum bond.  相似文献   

14.
In this work, we show that polymer networks composed of tertiary alkyl phosphines can be cleanly functionalized with phosphino-phosphonium or triphosphenium cations. Methods for functionalizing the polymers range from halide abstraction of commercially available reagents, to ligand exchange from simple to make reported compounds, and finally, macromolecular ligand design guided by observations made at the molecular level to accommodate the formation of kinetically favored triphosphenium cation functionalized networks. The synthesis, comprehensive characterization, and comparison of the new polymers to molecular analogues is outlined. It is shown the addition of the low valent phosphorus centers to the polymer network has the effect of tuning material physical properties.  相似文献   

15.
Metal–organic frameworks (MOFs) with expanding porosity and tailored pore environments are intriguing for catalytic applications. We report herein a straightforward method of controlled partial linker thermolysis to introduce desirable mesopores into mono-ligand MOFs, which is different from the classical thermolyzing method that starts from mixed-linker MOFs. UiO-66-NH2, after partial ligand thermolysis, exhibits significant mesoporosity, retained crystal structure, improved charge photogeneration and abundant anchoring sites, which is ideal to explore single-site photocatalysis. Atomically dispersed Cu is then accommodated in the tailored pore. The resulting single-site Cu catalyst exhibits excellent performance for photocatalytic alkylation and oxidation coupling for the functionalization of terminal alkynes. The study highlights the advantage of controlled partial linker thermolysis to synthesize hierarchical MOFs to achieve the advanced single-site photocatalysis.  相似文献   

16.
beta-Hydrogen transfer (BHT) to monomer is the dominant chain termination pathway for olefin polymerization promoted by group 4 metal catalysts. The transition state (TSA) for BHT studied in earlier work is characterized by a strong metal-hydrogen interaction. Our theoretical study of a series of homogeneous single-site polymerization catalysts reveals the existence of a second transition state (TSC), competitive with TSA, which has no direct metal-hydrogen interaction and strongly resembles that for the main-group metal aluminum. The balance between the two reaction paths is sensitive to choice of metal and ligand structure.  相似文献   

17.
The range of molecular silicon phosphorus compounds has been extended by some new species containing oligosilane ((R2Si)n; n ≥ 2) or oligosiloxane ((R2SiO)mSiR2; m ≥ 1) fragments bound to phosphorus atoms. Primary and secondary compounds of these types allow for the synthesis of metal derivatives. Such metalated species usually form oligomers and exhibit a versatile structural chemistry with cyclic, polycyclic, and cage‐like patterns. The main results obtained in the field of oligosilane‐ and oligosiloxane‐bridged phosphines will be presented below and the structures of the metal derivatives will be discussed. Moreover, the synthesis of an inorganic ligand on the basis of siloxane‐bridged phosphines will be presented. This compound opens up a new chapter in host‐guest chemistry.  相似文献   

18.
因为贵金属的价格比较高,并且很多催化反应主要发生在载体和金属接触的周围原子,所以减少贵金属的粒径对于提高金属原子利用率是非常可取的.原子利用率的最高极限就是形成单原子催化活性中心,然而合成稳定的单原子金属催化剂是一个巨大的挑战,因为单原子金属极易聚合成较大的金属颗粒.尽管存在着很大的困难,合成稳定的单原子金属还是可能的.研究表明,单原子金属容易镶嵌在表面能量最高的活性位上,以降低金属和载体的总能量,使之达到最稳定状态.随着金属的负载量增加,以此单原子金属为"晶种"将形成金属纳米粒子.根据这一原理,我们通过简单热扩散方法在HMO表面把Ag纳米粒子"拆分"成单个的Ag原子,并稳定地镶嵌在由HMO四个氧形成的空穴上(HMO的孔道口),使体系的能量降到最低.我们通过原位X射线衍射(XRD)、扩展X射线吸收精细结构光谱(EXAFS)和电子显微镜照片(TEM)详细证明了这种自上而下的合成过程,并通过X射线吸收近边结构光谱(XANES)、氢气程序升温还原(H2-TPR)、CO吸附实验等表征手段和理论计算说明了诱导这一过程的原因.首先我们合成了具有高比表面积的Hollandite型二氧化锰(HMO)纳米颗粒,并且在上面负载纳米银颗粒.TEM数据表明经过焙烧纳米银颗粒消失,形成单原子分散在HMO表面.原位XRD的结果表明随着焙烧温度的升高,银颗粒的衍射峰强度逐渐降低,最后消失,说明纳米银颗粒随着温度的升高逐渐减少,最后达到银高分散的状态.通过对Ag(111)衍射峰强度进行分析,我们发现当温度低于150 oC时,Ag(111)衍射峰强度基本保持不变,说明银颗粒没有变化.当温度高于150 oC时,Ag(111)衍射峰强度开始减小,并且减小的程度随温度的升高而变大.当温度高于260 oC时,Ag(111)衍射峰消失.为了更好的研究这个过程,我们分别在150,200,350 oC焙烧银颗粒的样品,并测试了它们的EXAFS谱.结果表明随着焙烧温度的升高,银和银之间配位数减小,意味着银颗粒的减小.350 oC焙烧样品的EXAFS谱在银原子散射的0.28–0.30 nm范围内没有吸收峰,说明银原子在HMO表面高度分散.然后我们通过XANES谱和理论计算证明了银和载体表面晶格氧的相互作用导致银的前线轨道的电子重新发生排布,从而诱导了整个自上向下的合成过程.最后活性测试表明,单原子银催化剂在甲醛催化氧化中表现出最好的催化活性,并简单研究了单原子催化氧化甲醛的机理.因此这种合成策略有两个重要的作用:(1)增加催化活性位的数量;(2)单原子催化剂的合成有利于催化反应机理的研究,比如甲醛催化氧化.  相似文献   

19.
This article is a review of the physical characterization of well-defined site-isolated molecular metal complexes and metal clusters supported on metal oxides and zeolites. These surface species are of interest primarily as catalysts; as a consequence of their relatively uniform structures, they can be characterized much more precisely than traditional supported catalysts. The properties discussed in this review include metal nuclearity, oxidation state, and ligand environment, as well as metal-support interactions. These properties are determined by complementary techniques, including transmission electron microscopy; X-ray absorption, infrared, Raman, and NMR spectroscopies; and density functional theory. The strengths and limitations of these techniques are assessed in the context of results characterizing samples that have been investigated thoroughly and with multiple techniques. The depth of understanding of well-defined metal complexes and metal clusters on supports is approaching that attainable for molecular analogues in solution. The results provide a foundation for understanding the more complex materials that are typical of industrial catalysts.  相似文献   

20.
Design and development of a truly nanobifunctional heterogeneous catalyst for the Claisen-Schmidt condensation (CSC) of benzaldehydes with acetophenones to yield chalcones quantitatively followed by asymmetric epoxidation (AE) to afford chiral epoxy ketones with moderate to good yields and impressive ee's is described. The nanomagnesium oxide (aerogel prepared) NAP-MgO was found to be superior over the NA-MgO and CM-MgO in terms of activity and enantioselectivity as applicable in these reactions. An elegant strategy for heterogenization of homogeneous catalysts is presented here to evolve single-site chiral catalysts for AE by a successful transfer of molecular chemistry to surface metal-organic chemistry with the retention of activity, selectivity/enantioselectivity. Br?nsted hydroxyls are established as sole contributors for the epoxidation reaction, while they add on to the CSC, which is largely driven by Lewis basic O2-sites. Strong hydrogen-bond interactions between the surface -OH on MgO and -OH groups of diethyl tartrate are found inducing enantioselectivity in the AE reaction. Thus, the nanocrystalline NAP-MgO with its defined shape, size, and accessible OH groups allows the chemisorption of TBHP, DET, and olefin on its surface to accomplish single-site chiral catalysts to provide optimum ee's in AE reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号