首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary: From kinetic theory we have rigorously derived singularity‐free Brownian dynamics analyses of nanoparticle rotational dynamics. The rigid non‐spherical nanoparticles incorporate all three rotational degrees of freedom. This was achieved by using the components of Cartesian rotation vectors as the generalized coordinates describing angular orientation. The new results constitute an important advance compared to the situation when Eulerian angles specify angular orientation. Our finding eliminates one of the main longstanding obstacles to detailed studies of nanoparticle rotational dynamics in the diffusion time domain. The described formalism is applicable to a wide range of nanoparticle systems including liquid crystals, biopolymers, and colloids.

  相似文献   


2.
《Chemphyschem》2005,6(11):2404-2409
Herein, we continue our investigation of the single‐molecule spectroscopy of the conjugated polymer poly[2‐methoxy,5‐(2‐ethylhexyloxy)‐p‐phenylene‐vinylene] (MEH‐PPV) at cryogenic temperatures. First, the low temperature microsecond dynamics of single MEH‐PPV conjugated polymer molecules are compared to the dynamics at room temperature revealing no detectible temperature dependence. The lack of temperature dependence is consistent with the previous assignment of the dynamics to a mechanism that involves intersystem crossing and triplet–triplet annihilation. Second, the fluorescence spectra of single MEH‐PPV molecules at low temperature are studied as a function of excitation wavelength (i.e. 488, 543, and 568 nm). These results exhibit nearly identical fluorescence spectra for different excitation wavelengths. This strongly suggests that electronic energy transfer occurs efficiently to a small number of low‐energy sites in the multichromophoric MEH‐PPV chains.  相似文献   

3.
We present a new approach to investigate how the photodynamics of an octahedral ruthenium(II) complex activated through two‐photon absorption (TPA) differ from the equivalent complex activated through one‐photon absorption (OPA). We photoactivated a RuII polypyridyl complex containing bioactive monodentate ligands in the photodynamic therapy window (620–1000 nm) by using TPA and used transient UV/Vis absorption spectroscopy to elucidate its reaction pathways. Density functional calculations allowed us to identify the nature of the initially populated states and kinetic analysis recovers a photoactivation lifetime of approximately 100 ps. The dynamics displayed following TPA or OPA are identical, showing that TPA prodrug design may use knowledge gathered from the more numerous and easily conducted OPA studies.  相似文献   

4.
5.
Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid‐state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self‐assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule‐like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li+ and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f‐block element materials and vesicle‐like POMs.  相似文献   

6.
7.
Live imaging of exocytosis dynamics is crucial for a precise spatiotemporal understanding of secretion phenomena, but current approaches have serious limitations. We designed and synthesized small‐molecular fluorescent probes that were chemically optimized for sensing acidic intravesicular pH values, and established that they can be used to sensitively and reliably visualize vesicular dynamics following stimulation. This straightforward technique for the visualization of exocytosis as well as endocytosis/reacidification processes with high spatiotemporal precision is expected to be a powerful tool for investigating dynamic cellular phenomena involving changes in the pH value.  相似文献   

8.
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light‐driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft‐template‐based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light‐driven jet propulsion. This NIR light‐powered CNB motor exhibits fuel‐free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications.  相似文献   

9.
10.
We demonstrate that three flexible MOFs termed FJI‐H11‐R (FJI‐H=Hong's group in Fujian Institute of Research on the Structure of Matter, R=Me, Et, iPr) can reversibly respond to temperature and solvents via structural transformations, which can be visualized by in situ single‐crystal X‐ray snapshot analyses. FJI‐H11‐R exhibit colossal anisotropic thermal expansion, with a record‐high uniaxial positive thermal‐expansion coefficient of 653.2×10?6 K?1 observed in FJI‐H11‐Me. Additionally, large c‐axial shrinkage of 32.4 % is also observed during desolvation. The stimuli‐responsive mechanism reveals the structural evolutions are related to the rotations and deformations of the organic linkers.  相似文献   

11.
Tracking membrane‐interacting molecules and visualizing their conformational dynamics are key to understanding their functions. It is, however, challenging to accurately probe the positions of a molecule relative to a membrane. Herein, a single‐molecule method, termed LipoFRET, is reported to assess interplay between molecules and liposomes. It takes advantage of FRET between a single fluorophore attached to a biomolecule and many quenchers in a liposome. This method was used to characterize interactions between α‐synuclein (α‐syn) and membranes. These results revealed that the N‐terminus of α‐syn inserts into the membrane and spontaneously transitions between different depths. In contrast, the C‐terminal tail of α‐syn is regulated by calcium ions and floats in solution in two conformations. LipoFRET is a powerful tool to investigate membrane‐interacting biomolecules with sub‐nanometer precision at the single‐molecule level.  相似文献   

12.
Surface‐hopping simulations are used to study the nonradiative relaxation of 9H‐guanine. Two distinct S1→S0 (ππ*→gs) decay channels, both of which pass through a conical intersection (CI), are found to be responsible for the experimentally observed double‐decay behavior (see schematic diagram).

  相似文献   


13.
Conformational changes in proteins and peptides can be initiated by diverse processes. This raises the question how the variation of initiation mechanisms is connected to differences in folding or unfolding processes. In this work structural dynamics of a photoswitchable β‐hairpin model peptide were initiated by two different mechanisms: temperature jump (T‐jump) and isomerization of a backbone element. In both experiments the structural changes were followed by time‐resolved IR spectroscopy in the nanosecond to microsecond range. When the photoisomerization of the azobenzene backbone switch initiated the folding reaction, pronounced absorption changes related to folding into the hairpin structure were found with a time constant of about 16 μs. In the T‐jump experiment kinetics with the same time constant were observed. For both initiation processes the reaction dynamics revealed the same strong dependence of the reaction time on temperature. The highly similar transients in the microsecond range show that the peptide dynamics induced by T‐jump and isomerization are both determined by the same mechanism and exclude a downhill‐folding process. Furthermore, the combination of the two techniques allows a detailed model for folding and unfolding to be presented: The isomerization‐induced folding process ends in a transition‐state reaction scheme, in which a high energetic barrier of 48 kJ mol?1 separates unfolded and folded structures.  相似文献   

14.
Photodissociation dynamics and rotational wave packet coherences of o‐bromofluorobenzene are studied by femtosecond time‐resolved photoelectron imaging (see figure). The decay of different photoelectron rings shows the population decay of states from which the lifetimes of different states are determined. The variation of photoelectron angular distributions reflects the evolution of rotational coherences.

  相似文献   


15.
16.
New isobutylene‐rich elastomers bearing multiple pendant styrenic, acrylic, maleimidic, vinylic, and allylic functional groups have been prepared and examined in the context of peroxide‐initiated crosslinking. Halide displacement from brominated poly(isobutylene‐co‐isoprene) (BIIR) by the requisite carboxylate nucleophiles in homogeneous toluene solutions provide the desired esters in quantitative yield without complications from dehydrohalogenation or premature crosslinking. Heating the resulting macromonomers with dicumyl peroxide to 160 °C under solvent‐free conditions gives thermoset derivatives, with reaction rates and yields depending markedly on functional group structure. In general, high cure extents can only be achieved using highly reactive pendant functional groups, owing to the competitive balance between crosslinking through C?C oligomerization, and degradation through β‐scission of backbone macroradical intermediates. Independent control of crosslinking rates and cure extents is gained through the use of nitroxyl radical traps bearing acrylate functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 123–132  相似文献   

17.
An understanding of solid‐state crystal dynamics or flexibility in metal–organic frameworks (MOFs) showing multiple structural changes is highly demanding for the design of materials with potential applications in sensing and recognition. However, entangled MOFs showing such flexible behavior pose a great challenge in terms of extracting information on their dynamics because of their poor single‐crystallinity. In this article, detailed experimental studies on a twofold entangled MOF ( f‐MOF‐1) are reported, which unveil its structural response toward external stimuli such as temperature, pressure, and guest molecules. The crystallographic study shows multiple structural changes in f‐MOF‐1 , by which the 3 D net deforms and slides upon guest removal. Two distinct desolvated phases, that is, f‐MOF‐1 a and f‐MOF‐1 b , could be isolated; the former is a metastable one and transformable to the latter phase upon heating. The two phases show different gated CO2 adsorption profiles. DFT‐based calculations provide an insight into the selective and gated adsorption behavior with CO2 of f‐MOF‐1 b . The gate‐opening threshold pressure of CO2 adsorption can be tuned strategically by changing the chemical functionality of the linker from ethanylene (?CH2?CH2?) in f‐MOF‐1 to an azo (?N=N?) functionality in an analogous MOF, f‐MOF‐2 . The modulation of functionality has an indirect influence on the gate‐opening pressure owing to the difference in inter‐net interaction. The framework of f‐MOF‐1 is highly responsive toward CO2 gas molecules, and these results are supported by DFT calculations.  相似文献   

18.
The design and synthesis of an enantiomeric pair of 1,8‐diethynylanthracene‐bridged naphthalenediimide (NDI)‐based cyclophanes ( Cyclo‐NDI s) are reported. Each enantiomer of Cyclo‐NDI exhibits a circularly polarized luminescence signal with a relatively large luminescence dissymmetry factor (glum=±8×10?3). We have further investigated the modulation of through‐space electronic communication between co‐facially oriented NDIs in a discrete Cyclo‐NDI with changes in the temperature. Tuning of the electronic communication results from the conformational transformation of monomer‐ versus dimer‐like features of Cyclo‐NDI , as confirmed by UV/Vis, fluorescence, circular dichroic, and NMR spectroscopic analysis. The temperature‐dependent optical response in the Cyclo‐NDI through the conformational transformation could be utilized as a highly sensitive and reversible optical thermometer in a wide temperature range (100 to ?80 °C).  相似文献   

19.
Coadsorbed anions are well‐known to influence surface reactivity and dynamics at solid–liquid interfaces. Here we demonstrate that the chemical nature of these spectator species can entirely determine the microscopic dynamic behavior. Quantitative in situ video‐STM data on the surface diffusion of adsorbed sulfur atoms on Cu(100) electrodes in aqueous solution covered by bromide and chloride spectators, respectively, reveal in both cases a strong exponential potential dependence, but with opposite sign. This reversal is highly surprising in view of the isostructural adsorbate arrangement in the two systems. Detailed DFT studies suggest an anion‐induced difference in the sulfur diffusion mechanism, specifically an exchange diffusion on the Br‐covered surface. Experimental evidence for the latter is provided by the observation of Cu vacancy formation in the Br system, which can be rationalized by a side reaction of the sulfur exchange diffusion.  相似文献   

20.
In this work, the dynamics of electronic energy transfer (EET) in bichromophoric donor–acceptor systems, obtained by functionalizing a calix[4]arene scaffold with two dyes, was experimentally and theoretically characterized. The investigated compounds are highly versatile, due to the possibility of linking the dye molecules to the cone or partial cone structure of the calix[4]arene, which directs the two active units to the same or opposite side of the scaffold, respectively. The dynamics and efficiency of the EET process between the donor and acceptor units was investigated and discussed through a combined experimental and theoretical approach, involving ultrafast pump–probe spectroscopy and density functional theory based characterization of the energetic and spectroscopic properties of the system. Our results suggest that the external medium strongly determines the particular conformation adopted by the bichromophores, with a direct effect on the extent of excitonic coupling between the dyes and hence on the dynamics of the EET process itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号