首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Recent developments in the field of microporous and mesoporous materials show the potential for applications in the area of environment protection, renewable energy exploitation, and health care.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The synthesis of highly microporous, epoxy‐functionalized porous organic polymers (ep‐POPs) by a one‐pot, catalyst‐free Diels–Alder cycloaddition polymerization is reported. The high oxygen content of ep‐POPs offer efficient hydrogen‐bonding sites for water molecules, thus leading to high water‐uptake capacities up to 39.2–42.4 wt % under a wide temperature range of 5–45 °C, which covers the span of climatic conditions and manufacturing applications in which such materials might be used. Importantly, ep‐POPs demonstrated regeneration temperatures as low as 55 °C, as well as excellent water stability, recyclability, and high specific surface areas up to 852 m2 g−1.  相似文献   

18.
Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐structured metal–organic framework/graphene/carbon nanotubes hybrids. The confined ultra‐small‐volume reaction, give well‐defined hybrids with a large specific‐surface‐area (1206 m2 g?1), abundant ionic‐channels (narrow pore of 0.86 nm), and nitrogen active‐sites (10.63 %), resulting in high pore‐size utilization (97.9 %) and redox‐activity (32.3 %). We also propose a scalable microfluidic‐blow‐spinning method to consecutively generate nanofibre‐based flexible supercapacitor electrodes with striking flexibility and mechanical strength. The supercapacitors display large volumetric energy density (147.5 mWh cm?3), high specific capacitance (472 F cm?3) and stably deformable energy‐supply.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号