首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
While current M0/MII based polymerization strategies largely focus on fine‐tuning the catalyst, reagents and conditions for each and every monomer, this report discloses a single method that allows access to a variety of different conjugated polymers within seconds at room temperature. Key to this privileged reactivity is an air‐ and moisture stable dinuclear PdI catalyst. The method is operationally simple, robust and tolerant to air.  相似文献   

9.
10.
The designed synthesis of a series of copper(II) specific fluorogenic hydrophobic task‐specific ionic liquids (TSILs) from a new naphthalene‐based tetradentate ligand is reported. Absorption and fluorescence spectral studies reveal both the ligand and its derivative TSILs show exclusive selectivity towards copper(II) ions. The Stern–Volmer method for calculation of the detection limit for ligand and TSIL1–3 shows values of 0.12, 20, 17, and 15 μM , respectively. Extraction and striping studies by doping these TSILs in [bmim][NTf2] demonstrated that these TSILs are recyclable extractants for the selective recovery of CuII ions from a mixture of 14 relevant metal chloride aqueous solutions in biphasic liquid–liquid extraction with approximately 95 % recovery.  相似文献   

11.
12.
Covalent‐organic frameworks (COFs) as porous crystalline materials show promising potential applications. However, developing facile strategies for the construction of COFs directly from amorphous covalent organic polymers (COPs) is still a great challenge. To this end, we report a novel approach for easy preparation of COFs from amorphous COPs through the linkage replacement under different types of reactions. Four COFs with high crystallinity and porosity were constructed via the linkage substitution of polyimide‐linked COPs to imine‐linked COFs as well as imine‐linked COPs to polyimide‐linked COFs. The realization of the linkage substitution would significantly expand the research scope of COFs.  相似文献   

13.
A composite material, {[Fe(L)(TPPE)0.5]?3 CH3OH}n, has been constructed by integrating the spin‐crossover (SCO) subunit FeII{diethyl(E,E)‐2,2′‐[1,2‐phenyl‐bis(iminomethylidyne)]bis(3‐oxobutanoate)‐(2‐)‐N,N′,O3,O3′} and the highly luminescent connector 1,1,2,2‐tetrakis(4‐(pyridin‐4‐yl)phenyl)‐ethene. Its structure contains four staggered 4×4 layers and intercalated methanol. The packing is dominated by considerable H‐bonds either between adjacent layers and between layers and guests. A crystal‐structure transformation was detected upon removal of the guest molecules. The SCO transition of the solvated crystals is centered at ca. 215 K with a non‐symmetrical hysteresis of 25 K wide, and the desolvated [Fe(L)(TPPE)0.5]n exhibits gradual SCO without hysteresis. Intriguingly, the intensity of the fluorescence at 460 nm for the latter is maximized at the SCO transition. The energy transfer between luminescent and SCO entities is achievable as confirmed by theoretical calculations.  相似文献   

14.
15.
16.
17.
18.
Trip the light of plastic: An aqueous fluorogenic sensing system consisting of selective and specific analyte-triggerable charge-generation polymers (CGPs) and a negatively charged aggregation-induced emission active fluorogen (TPE-COOH(4)) is presented. In the presence of a triggering analyte of interest, the CGPs undergo electrostatic complexation with TPE-COOH(4) leading to intense fluorescence emission due to the aggregation of TPE-COOH(4).  相似文献   

19.
Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号