首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
王尧  魏子栋 《电化学》2018,24(5):427
过渡金属氧化物(TMOs)是阴离子交换膜燃料电池最有前途的氧还原催化剂之一. 目前,TMOs的氧还原活性同铂基催化剂相比仍然有一定的差距,研究如何合成具有高催化活性的TMOs催化剂非常重要. 导电性和本征活性一直被认为是开发高性能TMOs催化剂的两个关键因素,本文着重总结与评述了近年来有关TMOs氧还原催化剂在导电性和本征活性方面的研究进展,尝试提出了未来提高TMOs氧还原催化活性的努力方向.  相似文献   

2.
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co-catalyst (e.g. Pt). For pursuing a carbon neutral and cost-effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench-top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half-reaction, and have so far shown limited success in hydrogen production from overall water-splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water-splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar-to-hydrogen) conversion efficiency.  相似文献   

3.
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co‐catalyst (e.g. Pt). For pursuing a carbon neutral and cost‐effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench‐top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half‐reaction, and have so far shown limited success in hydrogen production from overall water‐splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water‐splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar‐to‐hydrogen) conversion efficiency.  相似文献   

4.
Long afterglow materials can store and release light energy after illumination. A brick‐like, micrometer‐sized Sr2MgSi2O7:Eu2+,Dy3+ long‐afterglow material is used for hydrogen production by the photocatalytic reforming of methanol under round‐the‐clock conditions for the first time, achieving a solar‐to‐hydrogen (STH) conversion efficiency of 5.18 %. This material is one of the most efficient photocatalysts and provides the possibility of practical use on a large scale. Its remarkable photocatalytic activity is attributed to its unique carrier migration path and large number of lattice defects. These findings expand the application scope of long afterglow materials and provide a new strategy to design efficient photocatalysts by constructing trap levels that can prolong carrier lifetimes.  相似文献   

5.
Transition metal oxide (TMO) anode materials in lithium-ion batteries (LIBs) usually suffer from serious volume expansion leading to the pulverization of structures, further giving rise to lower specific capacity and worse cycling stability. Herein, by introducing polyoxometalate (POM) clusters into TMOs and precisely controlling the amount of POMs, the MnZnCuOx-phosphomolybdic acid hybrid sub-1 nm nanosheets (MZC-PMA HSNSs) anode is successfully fabricated, where the special electron rich structure of POMs is conducive to accelerating the migration of lithium ions on the anode to obtain higher specific capacity, and the non-covalent interactions between POMs and TMOs make the HSNSs possess excellent structural and chemical stability, thus exhibiting outstanding electrochemical performance in LIBs, achieving a high reversible capacity (1157 mAh g−1 at 100 mA g−1) and an admirable long-term cycling stability at low and high current densities.  相似文献   

6.
Solar energy is the largest renewable energy source in the world and the primary energy source of wind energy, tidal energy, biomass energy, and fossil fuel. Photocatalysis technology is a sunlight-driven chemical reaction process on the surface of photocatalysts that can generate H2 from water, decompose organic contaminants, and reduce CO2 into organic fuels. As a metal-free polymeric material, graphite-like carbon nitride (g-C3N4) has attracted significant attention because of its special band structure, easy fabrication, and low costs. However, some bottlenecks still limit its photocatalytic performance. To date, numerous strategies have been employed to optimize the photoelectric properties of g-C3N4, such as element doping, functional group modification, and construction of heterojunctions. Remarkably, these modification strategies are strongly associated with the surface behavior of g-C3N4, which plays a key role in efficient photocatalytic performance. In this review, we endeavor to provide a comprehensive summary of g-C3N4-based photocatalysts prepared through typical surface modification strategies (surface functionalization and construction of heterojunctions) and elaborate their special light-excitation and response mechanism, photo-generated carrier transfer route, and surface catalytic reaction in detail under visible-light irradiation. Moreover, the potential applications of the surface-modified g-C3N4-based photocatalysts for photocatalytic H2 generation and reduction of CO2 into fuels are summarized. Finally, based on the current research, the key challenges that should be further studied and overcome are highlighted. The following are the objectives that future studies need to focus on: (1) Although considerable effort has been made to develop a surface modification strategy for g-C3N4, its photocatalytic efficiency is still too low to meet industrial application standards. The currently obtained solar-to‑hydrogen (STH) conversion efficiency of g-C3N4 for H2 generation is approximately 2%, which is considerably lower than the commercial standards of 10%. Thus, the regulation of the surface/textural properties and electronic band structure of g-C3N4 should be further elucidated to improve its photocatalytic performance. (2) Significant challenges remain in the design and construction of g-C3N4-based S-scheme heterojunction photocatalysts by facile, low-cost, and reliable methods. To overcome the limitations of conventional heterojunctions thoroughly, a promising S-scheme heterojunction photocatalytic system was recently reported. The study further clarifies the charge transfer route and mechanism during the catalytic process. Thus, the rational design and synthesis of g-C3N4-based S-scheme heterojunctions will attract extensive scientific interest in the next few years in this field. (3) First-principle calculation is an effective strategy to study the optical, electrical, magnetic, and other physicochemical properties of surface strategy modified g-C3N4, providing important information to reveal the charge transfer path and intrinsic catalytic mechanism. As a result, density functional theory (DFT) computation will be paid increasing attention and widely applied in surface-modified g-C3N4-based photocatalysts.  相似文献   

7.
The photocatalytic hydrogen evolution reaction (PHER) has gained much attention as a promising strategy for the generation of clean energy. As opposed to conventional hydrogen evolution strategies (steam methane reforming, electrocatalytic hydrogen evolution, etc.), the PHER is an environmentally friendly and sustainable method for converting solar energy into H2 energy. However, the PHER remains unsuitable for industrial applications because of efficiency losses in three critical steps: light absorption, carrier separation, and surface reaction. In the past four decades, the processes responsible for these efficiency losses have been extensively studied. First, light absorption is the principal factor deciding the performance of most photocatalysts, and it is closely related to band-gap structure of photocatalysts. However, most of the existing photocatalysts have a wide bandgap, indicating a narrow light absorption range, which restricts the photocatalytic efficiency. Therefore, searching for novel semiconductors with a narrow bandgap and broadening the light absorption range of known photocatalysts is an important research direction. Second, only the photogenerated electrons and holes that migrate to the photocatalyst surface can participate in the reaction with H2O, whereas most of the photogenerated electrons and holes readily recombine with one another in the bulk phase of the photocatalysts. Hence, tremendous effort has been undertaken to shorten the charge transfer distance and enhance the electric conductivity of photocatalysts for improving the separation and transfer efficiency of photogenerated carriers. Third, the surface redox reaction is also an important process. Because water oxidation is a four-electron process, sluggish O2 evolution is the bottleneck in photocatalytic water splitting. The unreacted holes can easily recombine with electrons. Sacrificial agents are widely used in most catalytic systems to suppress charge carrier recombination by scavenging the photogenerated holes. Moreover, the low H2 evolution efficiency of most photocatalysts has encouraged researchers to introduce highly active sites on the photocatalyst surface. Based on the abovementioned three steps, multifarious strategies have been applied to modulate the physicochemical properties of semiconductor photocatalysts with the aim of improving the light absorption efficiency, suppressing carrier recombination, and accelerating the kinetics of surface reactions. The strategies include defect generation, localized surface plasmon resonance (LSPR), element doping, heterojunction fabrication, and cocatalyst loading. An in-depth study of these strategies provides guidance for the design of efficient photocatalysts. In this review, we focus on the mechanism and application of these strategies for optimizing light absorption, carrier separation and transport, and surface reactions. Furthermore, we provide a critical view on the promising trends toward the construction of advanced catalysts for H2 evolution.  相似文献   

8.
Transition metal oxides(TMO) bring a novel direction for the development of energy store materials due to their excellent stability. They not only have high capacity and good cycle performance, but also are cheap and easily available. Zinc oxide(Zn O) as an important part of TMO have gradually attracted attention in the research of electrochemistry. Zn O, as a metal semiconductor with the advantages of wide band gap, possesses high ion migration rate, good chemical stability, simple preparation ...  相似文献   

9.
One‐dimensional (1D) transition metal oxide (TMO) nanostructures are actively pursued in spintronic devices owing to their nontrivial d electron magnetism and confined electron transport pathways. However, for TMOs, the realization of 1D structures with long‐range magnetic order to achieve a sensitive magnetoelectric response near room temperature has been a longstanding challenge. Herein, we exploit a chemical hydric effect to regulate the spin structure of 1D V–V atomic chains in monoclinic VO2 nanowires. Hydrogen treatment introduced V3+ (3d2) ions into the 1D zigzag V–V chains, triggering the formation of ferromagnetically coupled V3+–V4+ dimers to produce 1D superparamagnetic chains and achieve large room‐temperature negative magnetoresistance (?23.9 %, 300 K, 0.5 T). This approach offers new opportunities to regulate the spin structure of 1D nanostructures to control the intrinsic magnetoelectric properties of spintronic materials.  相似文献   

10.
Developing transition metal oxides(TMOs) with high energy, power, and long cycle lifetime for electric energy storage devices remains a critical challenge to date. Herein, we demonstrate a facile method that enables in-situ transformation of nickel cobalt oxide nanowire arrays(Ni Co O NWA) into hierarchical nanowire-nanosheet arrays(ac-Ni Co O NWSA) for enhanced energy storage properties. More specifically,the method leads to formation of atomically thin nanosheets(only 2.0 nm) and creates abund...  相似文献   

11.
Fu  Cen-Feng  Zhao  Chuanyu  Zheng  Qijing  Li  Xingxing  Zhao  Jin  Yang  Jinlong 《中国科学:化学(英文版)》2020,63(8):1134-1141
The covalent triazine framework CTF-1 as a member of the two-dimensional covalent organic frameworks(COFs) is a category of novel metal-free photocatalysts for water splitting. The large band gap severely restricts its energy conversion efficiency. By means of the first-principles calculations, we proposed the decoration of CTF-1 by anchoring halogen atoms onto benzene moieties for improving the solar-to-hydrogen(STH) efficiency. The electronic structures reveal that the halogen substitution successfully decreases the band gap of CTF-1. Meanwhile, the calculated free energy changes along the reaction pathway indicate that all these COFs can spontaneously drive overall water splitting under light irradiation in a specific acid-base environment. The time-dependent ab initio non-adiabatic molecular dynamics simulations suggest that the electron-hole recombination periods of these COFs fall in a few to tens of nanoseconds. Excitingly, CTF-1 modified by linking six iodine atoms onto the benzene ring in the para-position(CTF-1-6I) shows a quite low band gap of 2.81 eV, indicating that it is a visible-light driven COF for overall photocatalytic water splitting. Correspondingly, CTF-1-6I also exhibits an extraordinarily promising STH efficiency of 3.70%, which is an order magnitude higher than that of the pristine CTF-1.  相似文献   

12.
Considerable attention has been paid to hybrid organic–inorganic nanocomposites for designing new optical materials. Herein, we demonstrate the energy and hole transfer of hybrid hole‐transporting α‐sexithiophene (α‐STH) nanoparticle–CdTe quantum dot (QD) nanocomposites using steady‐state and time‐resolved spectroscopy. Absorption and photoluminescence studies confirm the loss of planarity of the α‐sexithiophene molecule due to the formation of polymer nanoparticles. Upon photoexcitation at 370 nm, a nonradiative energy transfer (73 %) occurs from the hole‐transporting α‐STH nanoparticles to the CdTe nanoparticles with a rate of energy transfer of 6.13×109 s?1. However, photoluminescence quenching of the CdTe QDs in the presence of the hole‐transporting α‐STH nanoparticles is observed at 490 nm excitation, which is due to both static‐quenching and hole‐transfer‐based dynamic‐quenching phenomena. The calculated hole‐transporting rate is 7.13×107 s?1 in the presence of 42×10?8 M α‐STH nanoparticles. Our findings suggest that the interest in α‐sexithiophene (α‐STH) nanoparticle–CdTe QD hybrid nanocomposites might grow in the coming years because of various potential applications, such as solar cells, optoelectronic devices, and so on.  相似文献   

13.
近红外光能量占太阳能的44%,但是传统半导体光催化剂难以利用近红外光,因此制备近红外光催化剂是近几年来的研究热点。本文阐述了镧系离子掺杂的近红外光催化剂催化的基本原理,综述了镧系离子掺杂上转换纳米材料/半导体复合近红外光催化剂的合成方法及特点,重点介绍了外延生长法,静电纺丝法与化学组装法。并对这些近红外光催化材料在光降解污染物和光解水领域的应用进行了总结并对其应用前景进行了展望。  相似文献   

14.
近红外光能量占太阳能的44%,但是传统半导体光催化剂难以利用近红外光,因此制备近红外光催化剂是近几年来的研究热点。本文阐述了镧系离子掺杂的近红外光催化剂催化的基本原理,综述了镧系离子掺杂上转换纳米材料/半导体复合近红外光催化剂的合成方法及特点,重点介绍了外延生长法,静电纺丝法与化学组装法。并对这些近红外光催化材料在光降解污染物和光解水领域的应用进行了总结并对其应用前景进行了展望。  相似文献   

15.
余林颇  陈政 《电化学》2017,23(5):533
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展. 导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能. 活性炭和碳黑等一类碳材料则可作为非法拉第储能的电极材料. 通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量. 此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求. 超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

16.
Recently, artificial and semi-artificial photosynthesis have attracted extensive attentions in addressing the crisis of energy from fossil fuels and reducing excessive CO2 emission. Metal-organic frameworks (MOFs) have been considered as ideal platforms for constructing artificial photosynthesis systems due to their unique properties like large specific surface area, high porosity and diverse framework topology, and tunable functionalities. This review discussed the characteristics, superiorities and challenges of MOF-based photocatalysts, and detailed summarization of several common design strategies for MOF-based artificial systems, including i) enhancement of light absorption, ii) acceleration of the charge separation and transfer, and iii) introduction of additional active units. Particularly, we give examples showing the applications of MOF-based photocatalysts, where the mechanisms of superior photocatalytic activity and selectivity are also analyzed, thereby providing theoretical guidance for rational design of MOF-based photocatalysts. Finally, the challenges and future research directions of MOF-based photocatalysts are prospected.  相似文献   

17.
The local many-electron states in transition metal oxides (TMOs) are considered in the framework of the effective Hamiltonian of the crystal field (EHCF) method. The calculations are performed with use of the 5×5×5 clusters modeling TMOs with the rock salt crystal structure. The d-d excitation spectra are calculated and discussed with the aim of interpreting the experimental data on optical adsorption and electron energy loss spectra. The EHCF method is extended to account for the electron correlation in the d-shell and some electronic variables of ligands simultaneously. This approach is used to calculate the states of atomic and molecular oxygen on the surfaces of the TMOs. The possible role of geometric parameters of the adsorption complex is evaluated. The metal-oxygen distance and the exit of the metal ion from the surface plane are varied in a wide range. In the case of molecular oxygen different coordination forms are considered and for all adsorption systems the weights of different oxygen states (triplet, singlet, and charge transfer) are estimated.  相似文献   

18.
At present, more than 80% of the world's energy demand is fulfilled by the burning of fossil fuels, which has caused the production of a large amount of greenhouse gases, leading to global warming and damage to the environment. The high consumption of fossil fuels every year causes the energy crisis to become increasingly serious. Finding a sustainable and pollution-free energy source is therefore essential. Among all forms of energy sources, solar energy is preferred because of its cleanliness and inexhaustible availability. The energy provided by one year of sunlight is more than 100 times the total energy in known fossil fuel reserves worldwide; however, the extent of solar energy currently used by mankind each year is minute; thus developments in solar energy are imperative. To address the urgent need for a renewable energy supply and to solve environmental problems, a variety of technologies in the field of photocatalysis have been developed. Photocatalytic technology has attracted significant attention because of its superior ability to convert clean solar energy into chemical fuels. Among the photocatalytic materials emerging in an endless stream, perovskite oxide, with the general formula of ABO3, has great potential in the fields of solar cells and photocatalysis as each site can be replaced by a variety of cations. Furthermore, owing to its unique properties such as high activity, robust stability, and facile structure adjustment, perovskite oxide photocatalysts have been widely used in water decomposition, carbon dioxide reduction and conversion, and nitrogen fixation. In terms of carbon dioxide reduction, oxide perovskites can achieve precise band gap and band edge tuning owing to its long charge diffusion length and flexibility in composition. For the development and utilization of solar energy in the environmental field, perovskite oxide and its derivatives (layered perovskite oxide) are used as photocatalysts for water decomposition and environmental remediation. In terms of nitrogen fixation, the conventional Haber-Bosh process for ammonia synthesis, which has been widely used in the past, requires high temperature and high energy. Therefore, we summarize the recent advances in perovskite oxide photocatalysts for nitrogen fixation from the aspect of activating the adsorbed N2 by weakening the N $ \equiv $N triple bond, promoting charge separation, and accelerating the charge transfer to the active sites to realize the photochemical reaction. Overall, this review article presents the structure and synthesis of perovskite oxide photocatalysis, focusing on the application of photocatalysis in water splitting, carbon dioxide reduction, and nitrogen fixation. This review concludes by presenting the current challenges and future prospects of perovskite oxide photocatalysts.   相似文献   

19.
Overall water splitting to produce H2 and O2 over a semiconductor photocatalyst using solar energy is a promising process for the large-scale production of clean, recyclable H2. Numerous attempts have been made to develop photocatalysts that function under visible-light irradiation to efficiently utilize solar energy. In general, overall water splitting over a photocatalyst particle can be achieved by modifying the photocatalyst with a suitable cocatalyst to provide an active redox site. Therefore, the development of active photocatalytic materials has relied on both photocatalysts and cocatalysts. This review article describes the historical development of water-splitting photocatalysts.  相似文献   

20.
《中国化学快报》2021,32(11):3265-3276
The efficient utilization of solar energy through photocatalysis is ideal for solving environmental issues and the development sustainable future. BiOBr-based semiconductors possess unique narrowed bandgaps and layered structures, thereby widely studied as photocatalysts for environmental remediation. However, a little has been focused on the comprehensive reviewing of BiOBr despite its extensive and promising applications. In this review, the state-of-the-art developments of BiOBr-based photocatalysts for environmental remediation are summarized. Particular focus is paid to the synthetic strategies for the control of the resulting morphologies, as well as efficient modification strategies for improving the photocatalytic activities. These include boosting the bulk phase by charge separation, enhancing the spatial charge separation, and engineering the surface states. The environmental uses of BiOBr-based photocatalysts are also reviewed in terms of purification of pollutants and CO2 reduction. Finally, future challenges and opportunities of BiOBr-based materials in photocatalysis are discussed. Overall, this review provides a good basis for future exploration of high-efficiency solar-driven photocatalysts for environmental sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号