首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The efficient and effective storage of electrical energy with batteries is key for sustainable energy supply and emission free mobility. At present, lithium ion technology is the “best” high energy density battery and the first choice for use in electric vehicle applications, whereas for stationary storage of electricity a large number of battery technologies, including lithium ion batteries (LIB) , are in competition to each other. Even though the LIB is one step ahead of other battery technologies at the moment, this race is still open. Several new battery chemistries, such as lithium/sulfur, metal/air, sodium, magnesium and dual ion battery technologies are discussed as replacement or complementary technologies to lithium ion. The hope for improved and better battery technologies of the future is still high.  相似文献   

2.
3.
The utilization of CO2 in Li‐CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles’ heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme‐based liquid electrolyte, was used to fabricate a rechargeable Li‐CO2 battery with a carbon nanotube‐based gas electrode. The discharge product of Li2CO3 formed in the GPE‐based Li‐CO2 battery exhibits a particle‐shaped morphology with poor crystallinity, which is different from the contiguous polymer‐like and crystalline discharge product in conventional Li‐CO2 battery using a liquid electrolyte. Accordingly, the GPE‐based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g−1) are much higher than most of previous reports, which points a new way to develop high‐performance Li‐CO2 batteries.  相似文献   

4.
The ever‐increasing demand for rechargeable batteries induces significant pressure on the worldwide metal supply, depleting resources and increasing costs and environmental concerns. In this context, developing the chemistry of anion‐inserting electrode organic materials could promote the fabrication of molecular (metal‐free) rechargeable batteries. However, few examples have been reported because little effort has been made to develop such anionic‐ion batteries. Here we show the design of two anionic host electrode materials based on the N‐substituted salts of azaaromatics (zwitterions). A combination of NMR, EDS, FTIR spectroscopies coupled with thermal analyses and single‐crystal XRD allowed a thorough structural and chemical characterization of the compounds. Thanks to a reversible electrochemical activity located at an average potential of 2.2 V vs. Li+/Li, the coupling with dilithium 2,5‐(dianilino)terephthalate (Li2DAnT) as the positive electrode enabled the fabrication of the first all‐organic anionic rechargeable batteries based on crystallized host electrode materials capable of delivering a specific capacity of ≈27 mAh/gelectrodes with a stable cycling over dozens of cycles (≈24 Wh/kgelectrodes).  相似文献   

5.
Without lithium ion batteries todays society is not imaginable. Mobile phones, notebooks, tablet PCs, photo cameras or handheld consoles, all these battery powered devices equipment have become essential for our daily lives. Only the high energy density, the proven reliability and the long life of the lithium ion battery (LIB) technology make it possible, to operate portable consumer electronics devices in that manner that we are used to. LIBs are also considered for application in electro mobility and for stationary storage of renewable energy. Here significant advances in R&D as well as in application have been made in the last years, and the expectations for the future of this technology are still growing. Can the LIB or an alternative battery system fulfill these expectations? Will there be a new “super battery” chemistry? Are there new fields of research in battery chemistry and – technology for tomorrow and where?. These questions will be addressed by two articles on “High energy density accumulators”.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Rechargeable aqueous zinc-ion batteries are attractive because of their inherent safety, low cost, and high energy density. However, viable cathode materials (such as vanadium oxides) suffer from strong Coulombic ion–lattice interactions with divalent Zn2+, thereby limiting stability when cycled at a high charge/discharge depth with high capacity. A synthetic strategy is reported for an oxygen-deficient vanadium oxide cathode in which facilitated Zn2+ reaction kinetic enhance capacity and Zn2+ pathways for high reversibility. The benefits for the robust cathode are evident in its performance metrics; the aqueous Zn battery shows an unprecedented stability over 200 cycles with a high specific capacity of approximately 400 mAh g−1, achieving 95 % utilization of its theoretical capacity, and a long cycle life up to 2 000 cycles at a high cathode utilization efficiency of 67 %. This work opens up a new avenue for synthesis of novel cathode materials with an oxygen-deficient structure for use in advanced batteries.  相似文献   

14.
15.
16.
We demonstrate a novel crosslinked disulfide system as a cathode material for Li‐S cells that is designed with the two criteria of having only a single point of S−S scission and maximizing the ratio of S−S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g−1. The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long‐term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S−Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号