首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For colloidal semiconductor nanocrystals (NCs), replacement of insulating organic capping ligands with chemically diverse inorganic clusters enables the development of functional solids in which adjacent NCs are strongly coupled. Yet controlled assembly methods are lacking to direct the arrangement of charged, inorganic cluster‐capped NCs into open networks. Herein, we introduce coordination bonds between the clusters capping the NCs thus linking the NCs into highly open gel networks. As linking cations (Pt2+) are added to dilute (under 1 vol %) chalcogenidometallate‐capped CdSe NC dispersions, the NCs first form clusters, then gels with viscoelastic properties. The phase behavior of the gels for variable [Pt2+] suggests they may represent nanoscale analogues of bridged particle gels, which have been observed to form in certain polymer colloidal suspensions.  相似文献   

2.
We report an efficient approach to assemble a variety of electrostatically stabilized all‐inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all‐inorganic non‐ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs capped with I? ions and bridged with Cd2+ ions had a large surface area of 146 m2 g?1.  相似文献   

3.
Solid state (113)Cd, (77)Se, (13)C and (31)P NMR have been used to study a number of Cd chalcogenide nanoparticles synthesized in tri-n-octyl-phosphine (TOP) with different compositions and architectures. The pure CdSe and CdTe nanoparticles show a dramatic, size-sensitive broadening of the (113)Cd NMR line, which can be explained in terms of a chemical shift distribution arising from multiple Cd environments. From (13)C NMR, it has been discovered that TOP, or its derivatives such as TOPO (trioctylphosphine oxide), is rapidly moving about the surface of the nanoparticles, indicating that it is relatively weakly bound as compared to other materials used as surface ligands, such as hexadecylamine. (31)P NMR of the nanoparticles shows at least five species arising from coordination of the ligands to different surface sites. (113)Cd NMR of CdSeTe alloy and layered nanoparticles has provided crucial information which, in conjunction with results from other techniques (especially optical characterization), has made it possible to develop a detailed picture of the composition and structure of these materials: (i) a true CdSeTe homogeneous alloy nanoparticle, (ii) a nanoparticle segregated into an alloy core region rich in Te, with a CdSeTe (close to 1 : 1 Se : Te) alloy shell and (iii) a CdSe/CdTe/CdSe layered nanoparticle in which the CdTe layer contains a small amount of Se and which forms a Quantum Dot Quantum Well (QDQW) system. The results demonstrate that solid state NMR is a vital tool in the arsenal of characterisation techniques available for nanomaterials.  相似文献   

4.
In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N ~ 107) and a typical CZE peak for NCs (N ~ 105). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEFheight) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface.  相似文献   

5.
Solid-state NMR analysis on wurtzite alloyed CdSe1−xSx crystalline nanoparticles and nanobelts provides evidence that the 113Cd NMR chemical shift is not affected by the varying sizes of nanoparticles, but is sensitive to the S/Se anion molar ratios. A linear correlation is observed between 113Cd NMR chemical shifts and the sulfur component for the alloyed CdSe1−xSx (0<x<1) system both in nanoparticles and nanobelts (δCd=169.71⋅XS+529.21). Based on this correlation, a rapid and applied approach has been developed to determine the composition of the alloyed nanoscalar materials utilizing 113Cd NMR spectroscopy. The observed results from this system confirm that one can use 113Cd NMR spectroscopy not only to determine the composition but also the phase separation of nanomaterial semiconductors without destruction of the sample structures. In addition, some observed correlations are discussed in detail.  相似文献   

6.
Surface ligands of semiconductor quantum dots (QDs) critically influence their properties and functionalities. It is of strong interest to understand the structural characteristics of surface ligands and how they interact with the QDs. Three quantum dot (QD) systems (CdSe, ZnSe, and ZnS) with primary aliphatic amine capping ligands were characterized primarily by FT-IR spectroscopy as well as NMR, UV-vis, and fluorescence spectroscopy, and by transmission electron microscopy (TEM). Representative primary amines ranging from 8 to 16 carbons were examined in the vapor phase, KBr pellet, and neat and were compared to the QD samples. The strongest hydrogen-bonding effects of the adsorbed ligands were observed in CdSe QDs with the weakest observed in ZnS QDs. There was an observed splitting of the N-H scissoring mode from 1610 cm(-1) in the neat sample to 1544 and 1635 cm(-1) when bound to CdSe QDs, which had the largest splitting of this type. The splitting is attributed to amine ligands bound to either Cd or Se surface sites, respectively. The effect of exposure of the QDs dispersed in nonpolar medium to methanol as a crashing agent was also examined. In the CdSe system, the Cd-bound scissoring mode disappeared, possibly due to methanol replacing surface cadmium sites. The opposite was observed for ZnSe QDs, in which the Se-bound scissoring mode disappeared. It was concluded that surface coverage and ligand bonding partners could be characterized by FT-IR and that selective removal of surface ligands could be achieved through introduction of competitive binding interactions at the surface.  相似文献   

7.
Size/shape-controlled colloidal CdSe quantum disks with zinc-blende (cubic) crystal structure were synthesized using air-stable and generic starting materials. The colloidal CdSe quantum disks were approximately square, and their lateral dimensions were varied between 20 and 100 nm with the thickness controlled between 1 and 3 nm, which resulted in sharp and blue-shifted UV-vis and PL peaks due to one-dimensional quantum confinement. The quantum disks were grown with either <001> or <111> direction, polar directions in the single crystalline disks, as the short axis, and both basal planes were terminated with Cd ions. These surface Cd ions were passivated with negatively charged fatty acid ligands to neutralize the net positive charges caused by the excess monolayer of Cd ions. The coordination of the Cd ions and carboxylate groups further enabled the close-packing monolayer of fatty acid ligands on each basal plane. The close packing of the hydrocarbon chains of fatty acids dictated the up temperature limit for synthesis of the colloidal quantum disks, and the low temperature limit was found to be related to the reactivity of the starting materials. Overall, a high Cd to Se precursor ratio, negative-charged fatty acid ligands with a long hydrocarbon chain, and a proper temperature range (approximately between 140 and 250 °C) were found to be needed for successful synthesis of the colloidal CdSe quantum disks.  相似文献   

8.
Complexes of cadmium(II)-selenocyanate with several alkyldiamine ligands have been synthesized and characterized by IR, 113Cd, 77Se, 15N and 13C NMR spectroscopy. The X-ray structure of the complex [Cd(SeCN)2-en] reveals two non-equivalent metal ion centers, both with a distorted octahedral geometry. The combined bridging modes of selenocyanate and ethylenediamine with the blocking mode of a chelating ethylenediamine generate a 2D metal-organic framework.  相似文献   

9.
Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using 113Cd NMR experiments with 113Cd‐substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used 113Cd NMR spectroscopy during structure determination of Bud31p, a 157‐residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems.  相似文献   

10.
The surface functionalization of cellulose nanocrystals is presently considered a useful and straightforward tool for accessing very reliable biocompatible and biodegradable nanostructures with tailored physical and chemical properties. However, to date the fine characterization of the chemical appendages introduced onto cellulose nanocrystals remains a challenge, due to the low sensitivity displayed by the most common techniques towards surface functionalization. In this paper, we demonstrate the easy functionalization of cellulose nanocrystals with aliphatic and aromatic amines, demonstrating the tunability of their properties in dependence on the selected functionality. Then, we apply to colloidal suspensions of modified nanocrystals 1H NMR analysis to elucidate their surface structure. To the best of our knowledge, this is the first report where such investigation was performed on cellulose nanocrystals presenting both surface and reducing end modification. These results involve interesting implications for the fields of cultural heritage and of materials chemistry.  相似文献   

11.
Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using 1H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self‐adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X‐type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X‐type ligands yielding a combined X2 binding motif that allows for self‐adsorption and exchange for L‐type ligands.  相似文献   

12.
This Article reports measurements of the intra- and intermolecular ordering of tight-binding octylphosphonate ligands on the surface of colloidal CdSe quantum dots (QDs) within solid state films, and the dependence of this order on the size of the QDs. The order of the organic ligands, as probed by vibrational sum frequency generation (SFG) spectroscopy, decreases as the radius of the QDs decreases; this decrease is correlated with a decrease in the order of underlying Cd(2+), as detected by X-ray photoelectron spectroscopy (XPS) line width measurements, for radii of the QDs, R > 2.4 nm, and is independent of the disorder of the Cd(2+) for R < 2.4 nm. We believe that, for R < 2.4, the decreasing order of the ligands with decreasing size is due to an increase in the curvature of the QD surfaces. Disorder in the Cd(2+) results from the presence of a shell of Cd(2+)-surfactant complexes that form during synthesis, so this work demonstrates the possibility for chemical control over molecular order within films of colloidal QDs by changing the surfactant mixture.  相似文献   

13.
In this study, we demonstrate a new insight into the growth stage of aqueous semiconductor nanocrystals (NCs); namely, that the experimental variable‐dependent growth rate and photoluminescence quantum yields (PLQYs) are understandable according to electrostatics. In this context, the aqueous NCs possess (from core outwards) an inorganic core, ligand layer, adsorbed layer, and a diffuse layer. The presence of an electric double‐layer not only makes the NCs dispersible in the colloidal solution, but also governs the migration of monomers and monomer adsorption on the NC surface. To maintain NC growth, monomers need to migrate through the double‐layer. Consequently, the nature of the diffuse layer influences the ability of monomer diffusion and hence the growth rate of NCs. Systematic studies reveal that the experimental variables, including precursor concentrations, pH of the solution, additional NaCl concentrations, ratio of Cd to ligand, and the nature of the ligands significantly govern the nature of the NC electric double‐layer. The experimental variables, which reduce the thickness of the diffuse layer, benefit from monomer diffusion and a rapid growth of NCs. However, on the other hand, the diffuse layer also presents a charge‐selective transfer of Cd monomers. The neutral monomers, such as the complex of Cd2+ and 3‐mercaptopropionic acid (MPA) with 1:1 molar ratio [Cd(MPA)], migrate through the diffuse layer more easily than the charged ones [Cd(MPA)22? or Cd(MPA)34?], thus facilitating the growth of NCs. The nature of the adsorbed layer inside the diffuse layer, defined as the assumed interface of solid NCs and the liquid environment, also affects the growth rate and especially the PLQYs of NCs through the adsorption and coalescence of monomers on this interface. Strong interaction between the adsorbed layer and Cd monomers provides the opportunity to accelerate NC growth and to obtain NCs with high PLQYs.  相似文献   

14.
Ammonium thiocyanate (NH(4)SCN) is introduced to exchange the long, insulating ligands used in colloidal nanocrystal (NC) synthesis. The short, air-stable, environmentally benign thiocyanate ligand electrostatically stabilizes a variety of semiconductor and metallic NCs in polar solvents, allowing solution-based deposition of NCs into thin-film NC solids. NH(4)SCN is also effective in replacing ligands on NCs after their assembly into the solid state. The spectroscopic properties of this ligand provide unprecedented insight into the chemical and electronic nature of the surface of the NCs. Spectra indicate that the thiocyanate binds to metal sites on the NC surface and is sensitive to atom type and NC surface charge. The short, thiocyanate ligand gives rise to significantly enhanced electronic coupling between NCs as evidenced by large bathochromic shifts in the absorption spectra of CdSe and CdTe NC thin films and by conductivities as high as (2 ± 0.7) × 10(3) Ω(-1) cm(-1) for Au NC thin films deposited from solution. NH(4)SCN treatment of PbTe NC films increases the conductivity by 10(13), allowing the first Hall measurements of nonsintered NC solids, with Hall effect mobilities of 2.8 ± 0.7 cm(2)/(V·s). Thiocyanate-capped CdSe NC thin films form photodetectors exhibiting sensitive photoconductivity of 10(-5) Ω(-1) cm(-1) under 30 mW/cm(2) of 488 nm illumination with I(photo)/I(dark) > 10(3) and form n-channel thin-film transistors with electron mobilities of 1.5 ± 0.7 cm(2)/(V·s), a current modulation of >10(6), and a subthreshold swing of 0.73 V/decade.  相似文献   

15.
《Polyhedron》1986,5(3):695-701
New dialkylamido compounds of cadmium have been prepared and their physical and spectral properties studied. Adducts of Cd[N(SiMe3)2]2 with nitrogen donors have also been prepared and studied. Multinuclear NMR spectroscopy (113Cd, 29Si and 13C) has been used but no simple correlation of chemical shifts has been found except the downfield shifts for the 113Cd resonances accompanying an increae in coordination number from two of three.  相似文献   

16.
We report effects of various organic and inorganic ligands on optical properties of CdSe nanocrystals (NCs) by changes in their photoluminescence and absorbance spectra. Surface ligand loss occurring during dilution and purification of solutions of CdSe NCs leads to a decrease of photoluminescence intensity. The complex of trioctylphosphine with Se atoms on the surface of CdSe NCs is found responsible for the trap emission band that is red-shifted relative to the photoluminescence band edge.  相似文献   

17.
We report a NaOH‐mediated NaBH4 reduction method for the synthesis of mono‐, bi‐, and tri‐thiolate‐protected Au25 nanoclusters (NCs) with precise control of both the Au core and thiolate ligand surface. The key strategy is to use NaOH to tune the formation kinetics of Au NCs, i.e., reduce the reduction ability of NaBH4 and accelerate the etching ability of free thiolate ligands, leading to a well‐balanced reversible reaction for rapid formation of thermodynamically favorable Au25 NCs. This protocol is facile, rapid (≤3 h), versatile (applicable for various thiolate ligands), and highly scalable (>1 g Au NCs). In addition, bi‐ and tri‐thiolate‐protected Au25 NCs with adjustable ratios of hetero‐thiolate ligands were easily obtained. Such ligand precision in molecular ratios, spatial distribution and uniformity resulted in richly diverse surface landscapes on the Au NCs consisting of multiple functional groups such as carboxyl, amine, and hydroxy. Analysis based on NMR spectroscopy revealed that the hetero‐ligands on the NCs are well distributed with no ligand segregation. The unprecedented synthesis of multi‐thiolate‐protected Au25 NCs may further promote the practical applications of functional metal NCs.  相似文献   

18.
Binuclear diisopropyl and dicyclohexyl dithiophosphate cadmium complexes, namely, [Cd2{S2P(OR)2}4], were studied by high-resolution heteronuclear (13C, 31P, and 113Cd) NMR spectroscopy in the solid state in a temperature range from 295 to 378 K. 31P NMR signals for the terminal and bridging ligands of the complexes were differentiated. The experimental NMR spectra show 31111,113Cd and 113Cd–31 spin–spin couplings only for the terminal ligands. The chemical shift anisotropy aniso and the asymmetry parameter were calculated for 31P and 113Cd NMR signals. It was found that the 31P chemical shifts for the terminal and bridging dithiophosphato groups differ in anisotropy character.  相似文献   

19.
In this review, some of the latest research developments on the characterization of the structure and properties of oxide materials by applying solid-state nuclear magnetic resonance spectroscopy (NMR), including the use of dynamic nuclear polarization (DNP) NMR, 17O NMR combined with surface selective labeling and 31P NMR coupled with phosphorous-containing probe molecules, are discussed.  相似文献   

20.
The ligand capping of phosphonic acid functionalized CdSe/ZnS core–shell quantum dots (QDs) was investigated with a combination of solution and solid‐state 31P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid‐state 31P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using 31P liquid‐state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' 31P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid‐state 31P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号