首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
7-Cchloro-3-(4-methoxystyryl)quinoxalin-2(1H)-one (CMOSQ) and 7-chloro-2-(4-methoxyphenyl)thieno(3.2-b)quinoxaline (CMOPTQ) have been investigated for mild steel corrosion in 1 M HCl at different concentrations using weight loss measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy methods. Generally, inhibition efficiency of the investigated compounds was found to depend on inhibitor concentration and their structures. Comparitive results showed that CMOPTQ was the best inhibitor and the inhibition efficiency increased with increasing the concentration and attained 86 and 87 % at 10?3 M of CMOPTQ and 10?3 M of CMOSQ, respectively. Potentiodynamic polarization studies clearly reveal that these inhibitors act essentially as cathodic-type inhibitors. The inhibition efficiency increases with immersion time and reaches 95 % CMOPTQ at 24 h. The electrochemical impedance spectroscopy result showed that these compounds act by formation of film.  相似文献   

2.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

3.
The inhibitive effect of 2-cyano-3-hydroxy-4(Ar)-5-anilino thiophene derivatives on the corrosion of 304 stainless steel (SS) in 3 M HCl solution has been investigated by weight loss, galvanostatic polarization techniques, and potentiodynamic anodic polarization in 3.5 % NaCl. The results indicate that these compounds act as inhibitors retarding the anodic and cathodic corrosion reactions. The presence of inhibitors does not change the mechanism of either hydrogen evolution reaction or SS dissolution. The activation energy and some thermodynamic parameters are calculated and discussed. These compounds are mixed-type inhibitors in the acid solution, and their adsorption on the SS surface is found to obey the Temkin adsorption isotherm. The results suggest that the percentage inhibition of these thiophene derivatives increases with increasing inhibitor concentration and decreases with increasing temperature. The synergistic parameter (S) was calculated and found to have a value greater than unity, indicating that the enhanced inhibition efficiency caused by the addition of I?, SCN?, and Br? is only due to a synergistic effect. The relationship between molecular structure and inhibition efficiency was elucidated by quantum-chemical calculations using semi-empirical self-consistent field (SCF) methods.  相似文献   

4.
Extracts of pomegranate have been investigated, by use of weight loss and potentiodynamic polarization techniques, as green and eco-friendly inhibitors of corrosion of Q235A steel in 1 M hydrochloric acid solution at 60 °C. The efficiency of inhibition by the extracts varied with extract concentration from 10 to 1,000 mg/L; the highest efficiency was 95.0 %. The extracts inhibit corrosion mainly by an adsorption mechanism. In addition, the hydroxyl and ether groups of polyphenols can capture the H+ to reduce the corrosion, and the polyphenols can eliminate dissolved O2 to inhibit oxygen-adsorption corrosion. Potentiodynamic polarization studies show that extracts are mixed-type inhibitors.  相似文献   

5.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

6.
The inhibition behavior of 6-methyl-4,5-dihydropyridazin-3(2H)-one (MDP) on corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 was investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. The results indicated that the corrosion inhibition efficiency depends on concentration, immersion time, solution temperature, and the nature of the acidic solutions. It is also noted that MDP is at its the most efficient in 1 M HCl and least in 0.5 M H2SO4. The effect is more pronounced with MDP concentration. It is found that the inhibition efficiency attains 98 % at 5 × 10?3 M in 1 M HCl and 75 % at 5 × 10?2 in 0.5 M H2SO4. Polarization measurements showed that the MDP acts as a mixed inhibitor. EIS diagrams showed that the adsorption of MDP increases the transfer resistance and decreases the capacitance of the interface metal/solution. From the temperature studies, the activation energies in the presence of MDP were found to be superior to those in uninhibited medium. Finally, a mechanism for the adsorption of MDP was proposed and discussed.  相似文献   

7.
In this article, three deferent surfactants as corrosion inhibitor were prepared in two steps. In the first step, maleic anhydride was amidated with dodecylamine to produce 2-ene-4-dodecanamide butanoic acid. In the second step, the resulting product was further esterified with different molecular weights of polyethylene glycol (m.wt. = 200, 400, and 600), namely, polyoxy ethylenyl-x-ene-4-dodecanamide butanoic acid, where x = 2, 4, or 6 according to molecular weights of polyethylene glycol used). The chemical structures of these inhibitors were confirmed by FTIR and 1H NMR. The corrosion inhibition effect of the synthesized inhibitors has been investigated on the carbon steel (type H-11) pipelines in 0.5 M HCl solution by the potentiodynamic polarization method. From the obtained results, it was found that the maximum inhibition efficiency (90.44%) was exhibited by polyoxy ethylenyl-6-ene-4-dodecanamide butanoic acid, while the minimum inhibition efficiency (79.84%) was obtained by polyoxy ethylenyl-2-ene-4-dodecanamide butanoic acid at 200 ppm and 35°C. Also, the values of activation energy and thermodynamic parameters were calculated and discussed. Adsorption of the synthesized inhibitors was found to follow the Langmuir's adsorption isotherm. Mixed physical and chemical adsorption mechanism is proposed.  相似文献   

8.
A supramolecular complex (HPDA) based on (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and octadecylamine (ODA) exhibited a favourable inhibiting effect on the corrosion of mild steel (MS) in the condensate water. The structural properties of HPDA, including the apparent association constant (κ) and the optimal spatial configuration, were clarified using phase solubility simulation and molecular mechanics calculations. The results indicated that HPDA was fairly stable in water with a κ value of 9199 mol?1, and its four possible configurations might coexist. The corrosion inhibition effect of HPDA was collectively evaluated by both experimental and theoretical methods. Weight loss measurements showed that the inhibition efficiency of HPDA depended on the concentration and temperature, and the maximum value could reach 92.6% with 50 mg L?1 concentration at 313 K. The potentiodynamic polarization tests showed that HPDA was a mixed type inhibitor with a predominantly anodic type. Also, the polarization resistance was effectively enhanced in the presence of HPDA according to the results of electrochemical impedance spectroscopy. Adsorption experiments revealed that HPDA inhibited the corrosion of MS by a chemisorption mechanism, which was well described by the Langmuir model. Surface analyses based on X-ray photoelectron spectroscopy and Auger electron spectroscopy disclosed that the chemisorption of HPDA on the MS surface resulted from the self-assembly of guest molecules (ODA) with a tilted orientation. In addition, an apparent connection was ascertained between the adsorption measurements and the theoretical parameters (Mulliken charges and molecular electrostatic potential plot) using quantum chemical calculations.  相似文献   

9.
The effect of adding 2-phenylimidazo[1,2-a]pyridine-3-carbaldehyde derivative named (P2), newly synthesized on the electrochemical behavior of C38 steel in molar hydrochloric acid was investigated by using the weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. EIS results show that the transfer resistance increases with the increase of concentration of P2 and it also had an inhibiting effect on C38 steel corrosion in HCl solutions. Weight-loss essays confirm that the corrosion rate decreases as the P2 concentration increases. The inhibition efficiency for this compound studied increased with the increase in the inhibitor concentrations to attain 91.7 % at the 10?3 M of P2. The potentiodynamic polarization curves indicated that P2 acted as a mixed-type inhibitor in hydrochloric acid.  相似文献   

10.
The effect of cefazolin (CZ) and cefotaxime (CT) as corrosion inhibitors for carbon steel in 0.5 M H2SO4 solution was investigated by use of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), electrochemical frequency modulation (EFM), and scanning electron microscopy (SEM). CZ and CT acted as mixed-type inhibitors. Inhibition increased with increasing inhibitor concentration and decreased with increasing temperature. Adsorption of the inhibitors obeyed the Langmuir adsorption isotherm. SEM confirmed inhibition by the inhibitors. Inhibition by 5 × 10?4 M CZ and 7 × 10?4 M CT approached 99.6 % and 90.9 %, respectively. The EIS and EFM results were in good agreement with the potentiodynamic data.  相似文献   

11.
The aim of the present work was to study the corrosion inhibition of carbon steel using a ternary formulation. This new ternary inhibitor formulation, viz., 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), with zinc ions and silicate ions was used to protect carbon steel from corrosion in a low-chloride environment. The gravimetric studies showed that 96 % inhibition efficiency was achieved with the ternary system consisting of 50 ppm PBTC, 50 ppm Zn2+ ions, and 10 ppm silicate ions. Out of 0.310 mmol of Zn2+ ions, 0.218 mmol was diffused from the bulk of the solution to the metal surface, as revealed from the studies of the solutions by atomic absorption spectroscopy (AAS). Electrochemical methods (potentiostatic polarization and electrochemical impedance spectroscopy) and surface characterization techniques [Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM)] were used to ascertain the nature of the protective film and for explaining the mechanistic aspects of corrosion inhibition.  相似文献   

12.
In this study, electrochemical synthesis of poly(o-phenylenediamine) (PoPDA) on 316L stainless steel and its corrosion inhibition effect were studied. Electropolymerization of o-phenylenediamine (oPDA) was carried out by a potentiodynamic method using 0.5 M H2SO4 solution containing 0.05 M oPDA monomer. The corrosion protection ability of the PoPDA in 3.5 % NaCl was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, and change of open circuit potential with immersion time (EOCP ? t). The results showed that PoPDA acted as a protective layer on stainless steel against corrosion in 3.5 % NaCl solution.  相似文献   

13.
The structures of the anhydrous 1:1 proton‐transfer compounds of the dye precursor aniline yellow [4‐(phenyldiazenyl)aniline], namely isomeric 4‐(phenyldiazenyl)anilinium 2‐carboxy‐6‐nitrobenzoate, C12H12N3+·C8H4NO6, (I), and 4‐(phenyldiazenyl)anilinium 2‐carboxy‐4‐nitrobenzoate, C12H12N3+·C8H4NO6, (II), and 4‐(phenyldiazenyl)anilinium 3‐carboxy‐5‐nitrobenzoate monohydrate, C12H12N3+·C8H4NO6·H2O, (III), have been determined at 130 K. In (I) the cation has longitudinal rotational disorder. All three compounds have substructures comprising backbones formed through strong head‐to‐tail carboxyl–carboxylate hydrogen‐bond interactions [graph set C(7) in (I) and (II), and C(8) in (III)]. Two‐dimensional sheet structures are formed in all three compounds by the incorporation of the 4‐(phenyldiazenyl)anilinium cations into the substructures, including, in the cases of (I) and (II), infinite H—N—H to carboxylate O—C—O group interactions [graph set C(6)], and in the case of (III), bridging through the water molecule of solvation. The peripheral alternating aromatic ring residues of both cations and anions give only weakly π‐interactive step features which lie between the sheets.  相似文献   

14.
The atmospheric corrosion of copper and silver influenced by graphite and alumina as particulate matter (PM) in an environment containing 200 μg m?3 SO2 + 150 μg m?3 NO2 at 85% RH and 25 °C was analyzed. Different proportions of PM mixture conditions were used, and the corrosion rate was followed using gravimetric analysis. Results of linear sweep voltammetry (LSV) and coulometric reduction (CR) indicated that larger corrosion rates were obtained in the presence of deposited PM. Under present exposure conditions, copper corrosion rate was larger than silver corrosion rate. X-ray diffraction (XRD) shows the presence of cuprite (Cu2O) and brochantite (Cu4SO4(OH)6) in the case of copper and achantite (Ag2S) in the case of silver.  相似文献   

15.
The electrochemical polymerization of polypyrrole (Ppy) films on AZ31Mg alloys was carried out using cyclic voltammetery in 0.5 M sodium salicylate solution containing 0.25 M pyrrole and different concentration of sodium fluoride (NaF). Corrosion performance of the Ppy film was assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 % NaCl solution. It was observed that Ppy coatings doped in the presence of 100 ppm NaF provide the best corrosion protection for magnesium and the corrosion potential shifted about 290 mV toward nobler potentials and decrease the corrosion current density about one order of magnitude. The surface analysis of the coatings showed that the addition of F? dopant anions led to an improvement in the smoothness, thickness, and adhesion quality of the synthesized Ppy coating on the Mg surface. The scanning electron microscopy (SEM) studies of the fluoride-doped Ppy films revealed that the synthesized coating has a closely packed globular structure which was composed of nanoparticles of Ppy.  相似文献   

16.
Inhibition of mild steel corrosion in 0.5 N sulfuric acid by 4-(N, N-dimethylaminobenzilidine)-3-mercapto-6-methyl-1, 2, 4-triazin (4H)-5-one (DAMMT) was studied using polarization studies (Tafel); electrochemical impedance spectroscopy studies (EIS), adsorption studies, and surface morphological studies (SEM and AFM). The effect of inhibitor concentrations on corrosion rate, the effect of temperature, degree of surface coverage, adsorption kinetics, and surface morphology are investigated. Results show that the rate of corrosion increases with temperature in the absence and presence of inhibitor. Activation energies and enthalpies of activation in the presence and absence of DAMMT were obtained by measuring the temperature dependence of the corrosion current. DAMMT exhibits excellent inhibition properties towards MS and act as a mixed type inhibitor.  相似文献   

17.
The adsorption process of two polycations (pDADMAC and C‐PAM) with different charge densities has been investigated using the quartz crystal microbalance technique with dissipation monitoring (QCM‐D). The effect of the charge density of the polycation, the NaCl concentration, and the complexation with an anionic surfactant are addressed in this work. X‐ray photoelectron spectroscopy and atomic force microscopy were utilized to analyze the adsorbate with respect to the film coverage and film structure. The corrosion‐inhibiting performance of the films on high‐purity iron in a CO2 saturated brine, at 25°C, 1 bar CO2, and pH 4, was investigated by the linear polarization resistance technique. It was found that the polycations adsorbed onto the iron surface, but the corrosion rate of 1 mm yr?1 was not lowered. However, the polycations formed a complex with an anionic surfactant, and such films showed excellent inhibition performance. Both films, of pDADMAC/SDS and of C‐PAM/SDS, lowered the corrosion rate of iron below 0.01 mm yr?1. The SDS concentration was below the cmc. It is believed that the SDS adsorbed into the preadsorbed polycation film, forming a complex structure resulting in a hydrophobic and dense film.  相似文献   

18.
Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol–gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L?1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serum proteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in protein-containing solutions.  相似文献   

19.
Steady-state polarization measurements of lithium titanium oxide (LTO; Li[Li1/3Ti5/3]O4) were carried out using the 0-V lithium-ion cells consisting of two identical LTO-electrodes with a parallel-plate symmetrical electrode configuration. The sinusoidal voltage with the peak amplitude of 1.0 V was imposed at 0.1 Hz upon the 0-V cells and the current response was measured as a function of time. The steady-state polarization, obtained by plotting the current versus applied voltage, was linear in current up to approximately 60 mA cm?2 or 4 A g?1 based on the LTO weight and suggested the resistance polarization only for the lithium insertion electrode of the LTO. The method was also applied to lithium aluminum manganese oxide (LAMO; Li[Li0.1Al0.1Mn1.8]O4) and the resistance polarization of the LAMO-electrode was determined for currents up to approximately 25 mA cm?2 or 2 A g?1 based on the LAMO weight. The validity of the results was examined for the polarization measurements of the 2.5-V lithium-ion battery consisting of LTO and LAMO, and the significance of the polarization measurements of lithium insertion electrodes for high-power applications was discussed.  相似文献   

20.
In this study, the inhibitive effect of synthesized 1-(7-methyl-5-morpholin-4-yl-thiazolo[4,5-d]pyrimidin-2-yl)-hydrazine (MMTPH) as a new corrosion inhibitor for mild steel in 0.5 M sulfuric acid medium is investigated employing potentiodynamic polarization, electrochemical impedance spectroscopy and linear polarization resistance techniques. The results show MMTPH reduces anodic dissolution, retards the hydrogen evolution reaction and its adsorption follows Langmuir’s adsorption isotherm. Any increase in temperature will in turn increase corrosion current densities; however, the presence of MMTPH hinders the rate. In solutions with inhibitor concentration of 200 ppm, temperature elevations as great as 30° (25–55 °C) result in a drop of about 45 % in inhibition efficiency (99–55 %). Thermodynamic adsorption parameters show that the MMTPH is absorbed by a spontaneous exothermic process and the adsorption mechanism is physical. Quantum chemical method shows that the MMTPH molecules can be directly adsorbed at the steel surface on the basis of donor–acceptor interactions between π-electrons of pyrimidine, N atoms of hydrazine and vacant d-orbitals of iron atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号