首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The structure and stability of the lamellar liquid crystal formed by the surfactant sodium bis-2ethylhexyl sulfosuccinate (AOT) in water is perturbed by small amounts of the substituted acrylamides N-isopropyl, N,N-diethyl, N-acryloylmorpholine, and N,N-dimethyl methacrylamide, as revealed by small angle X-ray scattering (SAXS), deuterium NMR, and microscopy. These molecules are water soluble and stay mostly in the water layers between lamellae, but a small fraction of them (5-19%) are incorporated into the AOT bilayers, thereby producing dramatic changes. Both, the degree of anisotropy in the water molecules hydrating AOT (quadrupolar splitting in (2)H NMR) and the long period spacing between lamellae (SAXS), decrease with addition of this molecules at low concentrations, which is attributed to the lower average headgroup density at the AOT/water interface when the acrylamide is incorporated. The strength of these perturbations depends on the acrylamide, and goes in parallel with the hydrophobic character of the alkyl side groups in its molecule, which suggests that the acrylamides incorporated to the bilayer enter into contact with the lipophilic tails of the AOT molecule. An interaction with the hydrated heads of AOT is also suggested in the particular case of N-isopropylacrylamide. On increasing the molecule concentration an incipient melting of the lamellar phase towards an isotropic solution takes place, first at the microscopic level, then macroscopic. Near this phase transition, the ordered domains lose the random orientation prevailing at lower acrylamide concentrations, and adopt a preferred orientation, perpendicular to the magnetic field.  相似文献   

2.
The temperature-versus-composition phase diagrams of eight different 1-alkylpyridinium octane-1-sulfonates (APOSs) in water were studied by 1H NMR, 2H NMR, pulsed gradient spin-echo NMR, small-angle X-ray diffraction, differential scanning calorimetry, surface tension and conductivity measurements, and polarizing microscopy. The number of carbons (n(c)) in the hydrocarbon chain of the pyridinium counterions was varied from n(c) = 1 to n(c) = 8 to study how the phase behavior of the APOS/2H2O systems was affected by a change in the chain length of the counterion. The sodium octane-1-sulfonate (NaOS)/water system was used as a reference. This system formed an isotropic micellar solution (L1) phase and a normal hexagonal (H(I)) phase. All APOSs were readily soluble in water and formed L1 phases. The surface tension above the critical micelle concentration for n(c) between 1 and 3 was higher than that for NaOS, and it decreased steadily for the different APOSs with increasing chain length. The area per molecule at the air/solution interfaces was rather constant at 68 A2 for n(c) between 1 and 7. For 1-octylpyridinium octane-1-sulfonate (OPOS), it was about 5 A2 smaller, which was just outside the estimated error. However, the smallest area was obtained for NaOS. At higher surfactant concentrations, liquid crystalline phases formed. Both cubic and H(I) phases were found for n(c) = 1 and 2, while for n(c) between 3 and 5 only an H(I) phase was observed. H(I) and lamellar liquid crystalline (Lalpha) phases formed for n(c) = 6 and 7. The only liquid crystalline phase found in the OPOS system was a Lalpha phase. The NaOS H(I) phase was the only liquid crystalline phase that showed a linear relation between the 2H2O NMR quadrupolar splitting (deltaW) and Xsurf/X(W), where Xsurf and X(W) are the mole fractions of surfactant and water. The OPOS lamellae were found to be much thinner than expected, indicating a defect lamellar structure. This was further supported by the behavior of the quadrupolar splitting ofdeuterated OPOS. The anomalous behaviors of the 2H2O NMR quadrupolar splitting observed in the Lalpha phases of 1-heptylpyridinium octane-1-sulfonate and OPOS were interpreted in terms of changes in the population of the water molecules residing in different sites combined with a continuous rearrangement of the lamellae surface with the possible development of holes. The appearances of the phase diagrams were discussed in terms of surfactant molecular geometry and the packing of the amphiphiles in the aggregates formed.  相似文献   

3.
The formation of microemulsions with triglycerides at ambient conditions can be improved by increasing the surfactant-water and surfactant-oil interactions. Therefore, extended surfactants were developed, which contain hydrophilic/lipophilic linkers. They have the ability to stretch further into the oil and water phase and enhance the solubility of oil in water. In this work, the phase behavior of a chosen extended surfactant (C(12-14)-PO(16)-EO(2)-SO(4)Na, X-AES) in H(2)O/D(2)O at high surfactant concentrations (30-100 wt %) and at temperatures between 0 and 90 °C is studied for the first time. The lyotropic liquid crystals formed were determined by optical microscopy, small-angle X-ray scattering (SAXS), and (2)H and (23)Na NMR, and a detailed phase diagram of the concentrated area is given. The obtained mesophases are a hexagonal phase (H(1)), at low temperatures and small concentrations, a lamellar phase (L(α)) at high temperatures or concentrations, a bicontinuous cubic phase (V(2)) as well as a reverse hexagonal phase (H(2)). To our knowledge, this is the first surfactant that forms both H(1) and H(2) phases without the addition of a third compound. From the (2)H NMR quadrupole splittings of D(2)O, we have examined water binding in the L(α) and the H(2) phases. There is no marked difference in the bound water between the two phases. Where sufficient water is present, the number of bound water molecules per X-AES is estimated to be ca. 18 with only small changes at different temperatures. Similar results were obtained from the (23)Na NMR data, which again showed little difference in the ion binding between the L(α) and the H(2) phases. The X-ray diffraction data show that X-AES has a much smaller average length in the L(α) phase compared to the all-trans length than in the case for conventional surfactants. At very high surfactant concentrations an inverse isotropic solution (L(2)), containing a small fraction of solid particles, is formed. This isotropic solution is clearly identified and the size of the reversed micelles was determined using (1)H NMR measurements. Furthermore, the solid particles within the L(2) phase and the neat surfactant were analyzed. The observed results were compared to common conventional surfactants (e.g., sodium dodecyl sulfate, sodium lauryl ether sulfate, and sodium dodecyl-p-benzene sulfonate), and the influence of the hydrophilic/lipophilic linkers on the phase behavior was discussed.  相似文献   

4.
The temperature-surfactant concentration phase diagram was examined for the dodecyltrimethylammonium dimethylphosphate/3-methyl-3-methoxybutanol/water ternary system. The phase diagram contained a highly elastic gel phase which is known as a “ringing gel phase”. The ringing gel phase and adjacent phases in the ternary system were investigated by polarized optical microscopy, freeze-fracture transmission electron microscopy, and 31P NMR. Globular textures were observed in an optically isotropic gel phase. Since the globules were larger than those found in an isotropic solution, the texture consists of domains of aggregated units in the cubic (I1) phase. Structure units of domains are equivalent to microemulsions which are constructed by surfactant molecules and swollen by alcohol in the isotropic (L1) phase. Characteristic polarized microscopic textures were visualized in two phases with higher surfactant concentrations. These phases were identified as being hexagonal (H1) and lamellar (L) liquid crystals which was confirmed by transmission electron microscopy. The 31P NMR signal of the ringing gel showed a sharp singlet the same as that of the L1 phase, indicating the fully averaged anisotropic interaction of the aggregates. The characteristic NMR signals of the anisotropic hexagonal and lamellar liquid crystal phases displayed chemical shielding with an asymmetric lineshape.  相似文献   

5.
We report here a pioneering study using quadrupolar splitting NMR to detect new phases and phase compositions in the quasi-ternary microemulsion system water-decane-C(10)E(4)/PEP5-PEO5. The striking observation is that at certain compositions the polymer is apparently no longer incorporated into the membranes of the lamellar phase due to space restrictions. The polymer therefore induces a phase separation into two different lamellar phases L(alpha)(1) and L(alpha)(2) such that it fits into L(alpha)(1) while the excess surfactant forms a polymer-free L(alpha)(2) phase.  相似文献   

6.
The self-assembly behavior of a cationic surfactant (dodecyltrimethylammonium, DTA) with DNA as counterion in mixtures of water and n-alcohols (decanol, octanol, hexanol, butanol, and ethanol) was investigated. The phase diagrams were established and the different regions of the phase diagram characterized with respect to microstructure by (2)H NMR, small-angle X-ray scattering (SAXS), and other techniques. The DNA-DTA surfactant is soluble in all of the studied alcohols, showing increased solubility from decanol down to ethanol. All of the phase diagrams are analogous with respect to the occurrence of liquid crystalline (LC) regions, but the area of the LC region increases as one goes from decanol to ethanol. In all phase diagrams, hexagonal phases (of the reversed type) for the alcohol-rich side and lamellar phases for the other side were detected. For balanced proportions of the components, there is a coexistence of the lamellar and the hexagonal phase, here detected with a double quadrupole splitting in the (2)H NMR spectra. The correctness of the phase diagrams is confirmed by the fact that along the tie-lines the splitting magnitude remains nearly constant. All of the alcohols except for ethanol act as cosurfactants penetrating the DNA-DTA film. Adding salt to the ternary mixtures causes an increase in the unit cell dimension of the lamellar and the hexagonal phases. The phase diagram becomes more complicated when butanol is used for the alcohol phase. Here, there is the occurrence of a new isotropic phase with some properties analogous to those of the disordered sponge (L3) phase obtained for simple surfactant systems.  相似文献   

7.
The phase behavior (temperature vs composition) and microstructure for the two binary systems Pluronic 25R4 [(PO)19(EO)33(PO)19]-water and Pluronic 25R2 [(PO)21(EO)14(PO)21]-water have been studied by a combined experimental approach in the whole concentration range and from 5 to 80 degrees C. The general phase behavior has been identified by inspection under polarized light. Precise phase boundaries have been determined by analyzing 2H NMR line shape. The identification and microstructural characterization of the liquid crystalline phases have been achieved using small-angle X-ray scattering (SAXS). The isotropic liquid solution phases have been investigated by self-diffusion measurements (PGSE-NMR method). 25R2 does not form liquid crystals and is miscible with water in the whole concentration range; with increasing temperature, the mixtures split into water-rich and a copolymer-rich solutions in equilibrium. 25R4 shows rich phase behavior, passing, with increasing copolymer concentration, from a water-rich solution to a lamellar and copolymer-rich solution. A small hexagonal phase, completely encircled in the stability region of the water-rich solution, is also present. In water-rich solutions, at low temperatures and low copolymer concentrations, the copolymers are dissolved as independent macromolecules. With increasing copolymer concentrations an interconnected network of micelles is formed in which micellar cores of hydrophobic poly(propylene oxide) are interconnected by poly(ethylene oxide) strands. In copolymer-rich solutions water is molecularly dissolved in the copolymer. The factors influencing the self-aggregation of Pluronic R copolymers (PPO-PEO-PPO sequence) are discussed, and their behavior in water is compared to that of Pluronic copolymers (PEO-PPO-PEO sequence).  相似文献   

8.
A swollen lamellar phase, based on sodium dodecyl sulfate, pentanol and NaBr brine, was examined by means of NMR spectroscopy of isotopes with quadrupolar characteristics, namely 2H, 17O, 23Na and 81Br, present at natural abundance. Such a dilute lyotropic liquid crystal was capable of inducing a preferential orientation of the cobalt coordination compounds [Co(en)3]3+ and Co(acac)3, the 59Co NMR signals of which displayed quadrupolar splittings. Moreover, it imparted alignment in the magnetic field to the organocobaloxime [ClCD2Co(Hdmg)2H2O], as shown by the quadrupolar splitting of the deuterium of the axial ligand.  相似文献   

9.
Full equilibrium phase diagrams are presented for two ternary systems composed of the cationic surfactant dodecyltrimethylammonium bromide (DTAB), water (D(2)O), and a cyclodextrin, either β-cyclodextrin (β-CD) or (2-hydroypropyl)-β-cyclodextrin (2HPβCD). (2)H NMR, SAXS, WAXS, and visual examination were used to determine the phase boundaries and characterize the nature of the phases formed. Additionally, diffusion (1)H NMR was used to investigate parts of the diagrams. The water solubility of 2HPβCD is 80% (w/w), whereas it is only 1.85% (w/w) for β-CD. Solubility increases for both species upon complexation with DTAB; while the increase is minute for 2HPβCD, it is dramatic for β-CD. Both systems displayed an isotropic liquid solution (L(1)) one-phase region, the extension of which differs extensively between the two systems. Additionally, the DTAB:2HPβCD:water system also comprised a normal hexagonal (H(1)) area, which was not found for the DTAB:β-CD:water system. In the DTAB:β-CD:water system, on the other hand, we found cocrystallization of DTAB and β-CD. From this work we conclude that DTAB and CD molecules form 1:1 inclusion complexes with high affinities. Moreover, we observed indications of an association of 2HPβCD to DTAB micelles in the isotropic solution phase, which was not the case for β-CD and DTAB micelles. This is, to our knowledge, the first complete phase diagrams of surfactant-CD mixtures; as a novel feature it includes the observation of cocrystallization at high concentrations.  相似文献   

10.
Random mesh phases share many common features with the classical lamellar phase in that they are layered phases; but crucially, they possess nonuniform interfacial curvature, since the lamellae are pierced by water-filled pores. The introduction of curvature into the lamellae has been posited as a transitional precursor for other lyotropic phases. In this paper, we show that simple 2H nuclear magnetic resonance (NMR) experiments provide strong indication for the formation of the random mesh phase and the NMR data correlate well with literature results from small-angle X-ray scattering. The thermal evolution of the recorded quadrupolar splitting (DeltanuQ) is monitored within the lamellar phase of two nonionic surfactants, C16E6 and C12E5, as the samples are cooled or heated, and a marked and reversible change in the evolution of DeltanuQ is observed. Data from heavy water and deuterium labeled surfactant show the same temperature dependence and consequently report on the same structural changes with temperature. The formation of the random mesh phase is quantified in terms of an effective order parameter that is unity in the classical lamellar phase and takes values of <1 in the random mesh phase, reaching 0.6 at lower temperatures.  相似文献   

11.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

12.
The binary phase behaviour of two potentially polymerisable quaternary ammonium surfactants in water has been investigated. Allyldodecyldimethylammonium bromide (ADAB) a single-chain surfactant displays a conventional phase progression upon increasing concentration. Whereas the doublechain analogue allyldidodecylmethylammonium bromide (ADDAB) forms two lamellar liquid crystalline phases built from surfactant bilayers, which transform via a first order phase transition. The formation of two distinct lamellar phases and their coexistence has been evidenced by optical microscopy, small-angle x-ray scattering and D2O deuterium quadrupolar nuclear magnetic resonance spectroscopy. The lamellar phase formed at higher surfactant compositions is a normal lamellar phase (typeL ) consisting of bilayers which are on average parallel and flat. The lower compositional lamellar phase (typeL ) in contrast may not be comprised of planar bilayers but rather aggregates having a high degree of curvature in comparison to those of theL phase. The presence of the allyl polymerisable moiety in the head group position of these surfactants has the effect of reducing the rigidity of the surfactant and increasing its solubility in comparison to nonpolymerisable analogues. Polymerisation of the surfactants was attempted by using thermal and photochemical initiation in isotropic and self-assembled systems. Polymerisation occurred to approximately 30% for DADB but did not occur for ADDAB. Where polymerisation did occur the polymer was incorporated into the monomer matrix by interweaving between the surfactant aggregates. The polymers had a molecular wieght not greater than 8000 Daltons, independent of the monomer concentration of the original solution and type of polymerisation.  相似文献   

13.
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 °C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L2), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L1 and L2). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous “dry” surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from “dry” to the water droplet structures within the L2 phase. SAXS analyses have also been performed for selected LC samples.  相似文献   

14.
Self-assembling building blocks that are readily functionalizable and capable of achieving programmed hierarchical organization have enabled us to create various functional nanomaterials. We have previously demonstrated that N,N'-disubstituted 4,6-diaminopyrimidin-2(1 H)-one (DAP), a guanine-cytosine hybridized molecule, is a versatile building block for the creation of tapelike supramolecular polymer species in solution. In the current study, DAP was functionalized with azobenzene side chains. 1H NMR, UV/Vis, and dynamic light scattering studies confirmed the presence of nanometer-scale tapelike supramolecular polymers in alkane solvents at micromolar regimes. At higher concentrations (millimolar regimes), the supramolecular polymers hierarchically organized into lamellar superstructures to form organogels, as shown by X-ray diffraction and polarized optical microscopy. Remarkably, the azobenzene side chains are photoisomerizable even in the supramolecular polymers, owing to their loosely packed state supported by the rigid hydrogen-bonded scaffold, enabling us to establish photocontrollable supramolecular polymerization and higher order organization of the tapelike supramolecular polymers into lamellar superstructures.  相似文献   

15.
The aggregation behaviors of three Gemini surfactants [(C(s)H(2s)-α,ω-(Me(2)N(+)C(m)H(2m+1)Br(-))(2), s = 2, m = 10, 12, 14] in a protic ionic liquid, ethylammonium nitrate (EAN), have been investigated. The polarized optical microscopy and small-angle X-ray scattering (SAXS) measurements are used to explore the lyotropic liquid crystal (LLC) formation. Compared to the LLCs formed in aqueous environment, the normal hexagonal and lamellar phases disappear. However, with increasing the surfactant concentration, a new reverse hexagonal phase (H(II)) can be mapped over a large temperature range except for other ordered aggregates including the isotropic solution phase and a two-phase coexistence region. The structural parameters of the H(II) are calculated from the corresponding SAXS patterns, showing the influence of surfactant amount, alkyl chain length, and temperature. Meanwhile, the rheological profiles indicate a typical Maxwell behavior of the LLC phases formed in EAN.  相似文献   

16.
The binary phase diagram of tetraethylene glycol decanoyl ester (C9COE4) was investigated in the micellar region by PGSE-NMR (pulse field gradient spin echo nuclear magnetic resonance) and in the lamellar liquid crystalline state by 2H NMR. Its behavior was compared to the ether counterpart, tetraethylene glycol decanoyl ether (C10E4), whose phase diagram is well-described. The determination of the self-diffusion coefficient as a function of concentration permitted not only a determination of the critical micellar concentration (cmc) values but also the determination of the size and shape of micelles formed by both compounds. The evolution of the self-diffusion coefficients in the vicinity of the cloud point was also studied, showing no micellar growth with increasing temperature. 2H NMR analyses at the border of and within the liquid crystalline region gave an insight into the lamellar phase structure. We investigated in detail the lamellar phase of both compounds by comparing the values of quadrupolar splittings (Deltanu) measured under the same conditions. Lower Deltanu values were found for the ester compared to the ether: since the ester probably binds more water than the ether, these lower Deltanu values would indicate a lower order parameter in the liquid crystal phase. NMR techniques, either PGSE-NMR or 2H NMR, were confirmed as useful tools to characterize aqueous phase behavior of surfactants, providing supplementary information to the classical techniques such as visual observations, polarized optical microscopy (POM), and surface tension measurements. They also provide a unique insight into the molecular organization in the different phases formed.  相似文献   

17.
The phase diagram of the nematic mesophase present in the tetradecyltrimethylammonium bromide/sodium bromide/water ternary system was determined. A calamitic nematic mesophase (NC) was observed which extends to very high concentrations of electrolyte. The order parameters of the surfactant head group in the mesophases were studied by the NMR quadrupolar splitting of the deuterated surfactant. On increasing the temperature of nematic mesophases with low electrolyte concentrations, a phase separation occurs with the formation of a more highly ordered hexagonal phase and an isotropic phase. Diffusion measurements of the isotropic micellar solution by the NMR PFG method were used to estimate hydrodynamic radii at low surfactant concentrations and to study micelle diffusion as the concentration of the surfactant was increased to the liquid crystalline region. At higher surfactant concentrations, the diffusion coefficient reached a limiting value. The calamitic nematic mesophase in this surfactant/electrolyte/water system appears to be formed by long wormlike micelles.  相似文献   

18.
Phase diagrams for ternary system of the Gemini cationic surfactants, N,N-long chain alkyl-2-hydroxyl-N,N,N,N-tetramethyl diammonium dichloride (GnCl2) with butanol and water have been drawn based on experimental data at 25 °C. The phase diagrams show that L phase and different liquid crystalline phases are existent in the ternary system at different components. Electric conductivity of the L phase has been studied. Small-angle X-ray scattering (SAXS), 2H (deuterium) quadrupolar splitting (2H NMR) and the polarizing-light microscope were employed to confirm the characteristic texture structures and the microstructure of three different liquid crystalline phases.  相似文献   

19.
The micro- and mesoscopic structure of reverse Pluronic 25R4 in aqueous mixtures has been studied by SANS, SAXS and shear rheology. These techniques have been able to give a deep insight into the complex structure of the system phase diagram, that includes an isotropic water-rich liquid phase L(1), and liquid crystalline phases with hexagonal, E, or lamellar order, D. Particular attention has been paid to the isotropic water-rich phase L(1), which has a large stability region in the temperature-composition phase diagram. This region is crossed by a large "cloudy zone". Below it, namely at low temperature and composition, SANS data show the presence of polymer unimers in a gaussian coil conformation. Above the "cloudy zone", at higher temperature and composition, the L(1) phase is structured as a network of interconnected multimeric micelles. Rheology adds information about the structuring of the L(1) phase showing its incipient hexagonal pre-structuring. This technique is also able to highlight the defective structure of the E phase itself. In the temperature and concentration ranges in which a lamellar phase D is present, SANS and SAXS results are in complete agreement, showing how interlamellar distance is influenced by both polymer composition and temperature according to an "ideal deswelling" or a "not ideal swelling" mechanism. In addition, in the D phase rheology suggests the presence of densely packed vesicles.  相似文献   

20.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号