首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary and secondary phosphine piano-stool complexes of the type [eta(5)-CpFeL3]+ (L = phenylphosphine, 3, (alpha-methyl)vinylphosphine, 4, allylphosphine, 5, (2-methylpropenyl)phosphine, 5b, allyl(phenyl)phosphine, 6) are described. The alkenyl phosphine complexes, 5 and 6, react by intramolecular hydrophosphination to give the corresponding [eta(5)-CpFe]+ complexes of 1,5,9-triphosphacyclododecane (12-aneP3R3, 2, R = H), 9 and 10 respectively. Alkylation of the secondary phosphines in 9 is achieved by hydrophosphinations with ethene to give the 12-aneP3R3 (R = Et) derivative 11. These complexes are also obtained by reaction of suitable [eta(5)-CpFe]+ containing precursor complexes with the corresponding free 12-aneP3R3 macrocycle as is the related [eta(5)-Cp*Fe]+ derivative, 8. Direct substitution of acetonitrile in [Fe(CH3CN)6][BF4]2 by 12-aneP3Et3, leads to the macrocycle piano-stool complex, [(12-aneP3Et3)Fe(CH3CN)3][BF4]2, 7. The crystal structures of selected primary phosphine, eta(5)-Cp, eta(5)-Cp* complexes and 7, allow a comparison of steric influences upon key macrocycle ring closure reactions and hence an insight into parameters required for the formation of smaller ring sizes by template based methods.  相似文献   

2.
[eta(5)-Cp(R)Fe(CH3CN)(1,2-diphosphinobenzene)]+ complexes are readily formed from [eta(5)-Cp(R)FeL3]+ salts and act as template precursors for the intramolecular hydrophosphination of co-ordinated trivinylphosphine with 1,2-diphosphinobenzenes. This sequence constitutes a versatile synthetic route to a new class of co-ordinated triphosphacyclononanes bearing a rigid o-phenylene backbone link. The efficiency of the synthesis depends markedly upon the nature of the Cp(R) ligand. The new secondary phosphine macrocycles prepared by this route are readily alkylated to tritertiary triphosphine macrocycles bearing alkyl and pendant functions.  相似文献   

3.
The ruthenium complexes, [(eta5-C5R5)Ru(CH3CN)3]PF6 (1-Cp*, R = Me; 1-Cp, R = H), underwent reaction with both 1-(2-chloro-1-methylvinyl)-2-pentynyl-(Z)-cyclopentene (6-Z) and 1-(2-chloro-1-methylvinyl)-2-pentynyl-(E)-cyclopentene (6-E) to give (eta5-C5R5)Ru[eta6-(5-chloro-4-methyl-6-propylindan)]PF6 (7-Cp*, R = Me; 7-Cp, R = H). In a similar fashion, reaction of 1-Cp and 1-Cp* with 1-isopropenyl-2-pent-1-ynylcyclopentene (8) led to the formation of (eta5-C5R5)Ru(eta6-4-methyl-6-propylindan)]PF6 (9-Cp*, R = Me; 9-Cp, R = H). The reaction of 1-Cp* with 8 at -60 degrees C in CDCl3 solution led to observation of the eta6-dienyne complex, (eta5-C5Me5)Ru[eta6-(1-isopropenyl-2-pent-1-ynylcyclopentene)]PF6 (10), by 1H NMR spectroscopy. Complexes 7-Cp and 10 were characterized by X-ray crystallographic analysis.  相似文献   

4.
Treatment of the acetylene-coordinated tetrairon cluster, [(eta5-C5H4Me)4Fe4(HCCH)2]+, with N-bromosuccinimide led to stepwise bromination of two acetylene ligands to form [(eta5-C5H4Me)4Fe4(HCCBr)(HCCH)]+, [(eta5-C5H4Me)4Fe4(HCCBr)2]+, [(eta5-C5H4Me)4Fe4(BrCCBr)(HCCBr)]+, and [(eta5-C5H4Me)4Fe4(BrCCBr)2]+. The reactivity of the bromoacetylene fragment in [(eta5-C5H4Me)4Fe4(HCCBr)(HCCH)]+ toward water, pyridine, and ZnMe2 was also investigated.  相似文献   

5.
Representative members of a new family of covalently bonded charge-transfer molecular hybrids, of general formula [(eta5-C5H5)Fe(mu,eta6:eta1-p-RC6H4NN)Mo(eta2-S2CNEt2)3] +PF6- (R: H, 5+PF6-; Me, 6+PF6-; MeO, 7+PF6-) and [(eta5-C5Me5)Fe(mu,eta6:eta1-C6H5NN)Mo(eta2-S2CNEt2)3]+PF6-, 8+PF6-, have been synthesized by reaction of the corresponding mixed-sandwich organometallic hydrazines [(eta5-C5H5)Fe(eta6-p-RC6H4NHNH2)]+PF6- (R: H, 1+PF6-; Me, 2+PF6-; MeO, 3+PF6-) and [(eta5-C5Me5)Fe(eta6-C6H5NHNH2)]+PF6-, 4+PF6-, with cis-dioxomolybdenum(VI) bis(diethyldithiocarbamato) complex, [MoO2(S2CNEt2)2], in the presence of sodium diethyldithiocarbamato trihydrate, NaSC(=S)NEt2.3H2O, in refluxing methanol. These iron-molybdenum complexes consist of organometallic and inorganic fragments linked each other through a pi-conjugated aryldiazenido bridge coordinated in eta6 and eta1 modes, respectively. These complexes were fully characterized by FT-IR, UV-visible, and 1H NMR spectroscopies and, in the case of complex 7+PF6-, by single-crystal X-ray diffraction analysis. Likewise, the electrochemical and solvatochromic properties were studied by cyclic voltammetry and UV-visible spectroscopy, respectively. The electronic spectra of these hybrids show an absorption band in the 462-489 and 447-470 nm regions in CH2Cl2 and DMSO, respectively, indicating the existence of a charge-transfer transition from the inorganic donor to the organometallic acceptor fragments through the aryldiazenido spacer. A rationalization of the properties of 5+PF6--8+PF6- is provided through DFT calculations on a simplified model of 7+PF6-. Besides the heterodinuclear complexes 5+PF6--8+PF6-, the mononuclear molybdenum diazenido derivatives, [(eta1-p-RC6H4NN)Mo(eta2-S2CNEt2)3] (R: H, 9; Me, 10; MeO, 11), resulting from the decoordination of the [(eta5-C5H5)Fe]+ moiety of complexes 5+PF6--7+PF6-, were also isolated. For comparative studies, the crystalline and molecular structure of complex 10.Et2O was also determined by X-ray diffraction analysis and its electronic structure computed.  相似文献   

6.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

7.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

8.
The thermally stable silylene Si[(NCH2But)2C6H4-1,2] 1 undergoes oxidative addition reactions with the lithium amides LiNRR'(R = SiMe3, R' = But; R = SiMe3, R' = C6H3Me2-2,6; R = R' = Me or R = R' = Pri) to afford the new lithium amides Li(THF)2[N(R)Si(SiMe3){(NCH2But)2C6H4-1,2}][R = But2 or R = C6H3Me2-2,6 (3a)] or the new tris(amino)functionalised silyllithiums Li(THF)x[Si{(NCH2But)2C6H4-1,2}NRR'][R = SiMe3, R' = C6H3Me2-2,6, x = 2 (3); R = R'= Me, x = 3 (4) or R = R' = Pri, x = 3 (5)]. Compounds 4 and 5 are stable at ambient temperature but compound 3 is thermally labile and converts into 3a upon heating. The pathway for the formation of 2 and 3 is discussed and the X-ray structures of 2-5 are presented.  相似文献   

9.
Huang BH  Yu TL  Huang YL  Ko BT  Lin CC 《Inorganic chemistry》2002,41(11):2987-2994
Factors affecting the coordination mode of an amidato group on aluminum will be presented. The reaction of N-tert-butylalkylacetamide ((t)BuNHCR([double bond]O)) with 1.1 molar equiv of Me(3)Al in refluxing hexane affords a pentacoordinated, dimeric compound [Me(2)Al[eta(2)-(t)BuNC(R)(mu(2)-O)]](2) (3, R = p-(t)Bu-C(6)H(4); 4, R = 2,6-F,F-C(6)H(3); 5, R = Me; 6, R = CF(3); 7, R = p-F(3)C-C(6)H(4)). However, in the presence of 2.2 molar equiv of Me(3)Al, N-tert-butyl-4-tert-butylbenzamide ((t)BuNHC(p-(t)Bu-C(6)H(4))([double bond]O in refluxing hexane gives [Me(2)Al[eta(2)-(t)BuNC(p-(t)Bu-C(6)H(4))(mu(2)-O)]AlMe(3)], 8. In contrast, the reaction of R'NHCR' '([double bond]O) with 1 molar equiv of R(3)Al at room temperature produces tetracoordinated, dimeric, eight-membered ring aluminum compounds [R(2)Al[mu,eta(2)-R'NC(R' ')O]](2) (9, R = Me, R' = 2,6-(i)Pr, (i)()Pr-C(6)H(3), R' ' = Ph; 10, R = Me, R' = (i)Bu, R' ' = Ph; 11, R = Et, R' = Bn, R' ' = Ph; 12, R = Me, R' = Ph, R' ' = CF(3); 13, R = Me, R' = Bn, R' ' = CF(3)). On the other hand, 4'-chlorobenzanilide ((p-Cl-C(6)H(4))NHCPh([double bond]O)) reacts with R(3)Al to produce trimeric, twelve-membered ring aluminum compounds [R(2)Al[mu, eta(2)-(p-Cl-C(6)H(4))NC(Ph)O]](3) (14, R = Me; 15, R = Et). Furthermore, the reaction of 2'-methoxybenzanilide with 1 molar equiv of Me(3)Al in hexane yields a dinuclear aluminum complex [Me(2)Al(o-OMe-Ph)NC(Ph)(O)AlMe(3)], 16.  相似文献   

10.
The synthesis, structures, and unusual reactivity of (C5R5)2ZrR'(ClPh)+ chlorobenzene complexes are described. The reaction of (C5R5)2ZrR'2 with [Ph3C][B(C6F5)4] in C6D5Cl affords [(C5R5)2ZrR'(ClC6D5)][B(C6F5)4] chlorobenzene complexes (1-d5, R' = CH2Ph and (C5R5)2 = (C5H5)2; 2a-d-d5, R' = Me and (C5R5)2 = rac-(1,2-ethylene(bis)indenyl) (2a), (C5H5)2 (2b), (C5H4Me)2 (2c), (C5Me5)2 (2d, C5Me5 = Cp*)). Complexes 1 and 2b,c are thermally robust but are converted to [{(C5R5)2Zr(mu-Cl)}2][B(C6F5)4]2 (4b,c) by a photochemical process in ClPh solution. In contrast, 2d undergoes facile thermal ortho-C-H activation to yield [Cp*2Zr(eta2-C,Cl-2-Cl-C6H4)][B(C6F5)4] (5), which slowly rearranges to [(eta4,eta1-C5Me5C6H4)Cp*ZrCl][B(C6F5)4] (6) via beta-Cl elimination and benzyne insertion into a Zr-CCp* bond. The higher thermal reactivity of 2d versus that of 1 and 2b,c is attributed to steric crowding associated with the Cp* ligands of 2d, which forces a ClPh ortho-hydrogen close to the Zr-Me group.  相似文献   

11.
Thermal reaction of white phosphorus with [(triphos)RhH(3)] (1) in THF affords [(triphos)Rh(eta(1):eta(2)-P(4)H)] (2), triphos=MeC(CH(2)PPh(2))(3). Similar complexes [(triphos)Rh(eta(1):eta(2)-P(4)R)] (R=Me (7), Et (8), Ph (9)) also form at lower temperature by the reaction of P(4) and [(triphos)Rh(R)(eta(2)-C(2)H(4))] with elimination of ethene. In contrast, a double-insertion process follows the reaction of [(triphos)Rh(H)(eta(2)-C(2)H(4))] and P(4) to generate tetraphosphido ethyl complex 8. Compounds 2, 7, 8 and 9 are thermally unstable and eventually decompose into the cyclotriphosphorus complex [(triphos)Rh(eta(3)-P(3))] (3) plus other unidentified phosphorus-containing species. Otherwise, PH(3) or PH(2)R is generated in the presence of H(2). The formation of PH(3) and 3 is quantitative starting from the precursor 2. The electrophilic attack of MeOTf or HBF(4) on the P(4)R ligand in the complexes 2, 7-9 is regioselective, and yields a cationic product of formula [(triphos)Rh(eta(1):eta(2)-P(4)RR')](+). The direct attack on the substituted p-R phosphorus atom is demonstrated by crossing experiments. Complexes of the latter type have been isolated in the solid state for the combinations R=H and R'=Me (11) or R=Ph and R'=Me (12). The latter species, [(triphos)Rh(eta(1):eta(2)-P(4)PhMe')]OTf.2 CH(2)Cl(2) (OTf=triflate), has been characterised by X-ray methods. The geometry at the metal is better described as a trigonal bipyramidal than pseudo-octahedral. In fact, the P(4)RR' unit acts as a bidentate ligand with its exocyclic PR(2) donor group and the endocyclic, dihapto-coordinated Pdbond;P linkage. The latter group lies in the equatorial plane, in a similar way to a classic olefin ligand that is coordinated to a butterfly-shaped L(4)M fragment (M=d(8)). DFT calculations on a model of 2 and all possible protonated isomers confirm that double substitution at the exocyclic P-donor positions of the open P(4) unit is energetically favoured. A multinuclear and multidimensional NMR analysis confirms that this structure is maintained in solution for both the parent and the protonated compounds.  相似文献   

12.
A series of DFT calculations has been carried out with the aim of characterizing the metal-group 13 element interaction in the novel cationic borylene complex [(eta5-C2Me5)Fe(CO)2(BMes)]+ (1) and related species of the type [eta5-C5R5)M(L)2(EX)]n+. In addition, comparisons have been made with charge neutral borylene complexes and with related group 14 based ligand systems (e.g. cationic metal carbonyls, carbenes and vinylidenes) for which models of bonding have previously been established. In this regard particular attention has been focused on the interpretation of (i) molecular orbital composition; (ii) bond dissociation energies (BDEs) and the ratio of ionic to covalent contributions (DeltaEelstat/DeltaEorb); and (iii) sigma and pi symmetry covalent contributions. The molecular orbital compositions for the prototype borylene complex 1 and for related cationic and neutral systems [e.g.[(eta5-C5H5)Fe(PMe3)2(BMes)]+ and (eta5-C5H5)Mn(CO2(BMes)]] are consistent with the presence of bonding interactions between metal and borylene fragments of both sigma and pi symmetry. Furthermore, on the basis of BDEs, DeltaEorb values and sigma/pi covalent ratios, the bonding in cationic terminal borylene complexes such as 1 appears to have as much right to be termed a M=E double bond as does that in archetypal Fischer carbene and related complexes such as [(eta5-C5R5)Fe(CO)2(CCMe2)]+ and [(eta5-C5R5)Fe(CO)2(CH2)]+.  相似文献   

13.
14.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

15.
The rates of hydrogenation of the N2 ligand in the side-on bound dinitrogen compounds, [(eta(5)-C5Me4H)2Zr]2(mu2,eta(2),eta(2)-N2) and [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford the corresponding hydrido zirconocene diazenido complexes have been measured by electronic spectroscopy. Determination of the rate law for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) establishes an overall second-order reaction, first order with respect to each reagent. These data, in combination with a normal, primary kinetic isotope effect of 2.2(1) for H2 versus D2 addition, establish the first H2 addition as the rate-determining step in N2 hydrogenation. Kinetic isotope effects of similar direction and magnitude have also been measured for hydrogenation (deuteration) of the two other zirconocene dinitrogen complexes. Measuring the rate constants for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) over a 40 degrees C temperature range provided activation parameters of deltaH(double dagger) = 8.4(8) kcal/mol and deltaS(double dagger) = -33(4) eu. The entropy of activation is consistent with an ordered four-centered transition structure, where H2 undergoes formal 1,2-addition to a zirconium-nitrogen bond with considerable multiple bond character. Support for this hypothesis stems from the observation of N2 functionalization by C-H activation of a cyclopentadienyl methyl substituent in the mixed ring dinitrogen complexes, [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford cyclometalated zirconocene diazenido derivatives.  相似文献   

16.
The pentamethylcyclopentadienyl iron cation, generated from [(eta5-C5Me5)Fe(NCMe)3]PF6, triggers the room temperature cycloaromatization of acyclic and alicyclic enediynes, in the presence of either 1,4-cyclohexadiene or terpinene as the hydrogen-atom donor, to give metal-arene products in good to excellent yields. Photolysis of the metal-arene complexes liberates the arene from the metal in excellent yield. The first demonstration of a transition-metal-catalyzed cycloaromatization of conjugated enediynes has been achieved under photochemical conditions utilizing either [(eta5-C5Me5)Fe(NCMe)3]PF6 or [(eta5-C5Me5)Fe(eta6-1,2-(Prn)2C6H4)]PF6 as the catalyst precursor. The use of a metal and light has led to a convenient method for cycloaromatization of a trans-enediyne.  相似文献   

17.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

18.
The heteroatom-substituted imido complexes [(LAu)3(mu-NX)]+ (X = NR2, R = Ph, Me, Bz; X = OH, Cl; L = a phosphine) have been prepared from the reactions of NH2X with [(LAu)3(mu-O)]+. Thermally unstable [(LAu)3(mu-NNMe2)]+ (L = P(p-XC6H4)3, X = H, F, Me, Cl, MeO) decompose to the gold cluster [LAu]6(2+) and tetramethyltetrazene Me2NN=NNMe2. The decomposition is first-order overall with a rate constant that increases with increasing pKa of the phosphine ligand. Activation parameters for the decomposition are deltaH(not equal to) = 99(4) kJ/mol and deltaS(not equal to) = 18.5(5) J/K.mol for L = PPh3 and deltaH(not equal to) = 78(3) kJ/mol and deltaS(not equal to) = -47(2) J/K.mol for L = P(p-MeOC6H4)3. The decomposition of analogous [(LAu)3(mu-NNBz2)]+ produces bibenzyl, indicative of the release of free amino nitrene Bz2NN.  相似文献   

19.
Coordinatively unsaturated diruthenium complexes, [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+, of which crystallography revealed structures bearing a bridging amidinate ligand perpendicular to the Ru-Ru axis, were synthesized by anion exchange of [(eta5-C3Me5(Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+ Br- by weakly coordinating anions. Variable-temperature NMR showed rapid motion of the bridging amidinate ligand. The coordinatively unsaturated nature of the cationic complexes provides their high reactivity toward a series of two electron donor ligands. Oxidative addition of molecular hydrogen occurred to give [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)(mu-H)Ru(eta5-C5Me5)(H)]+, which was isolated and characterized.  相似文献   

20.
Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R'P═NSiMe(3) [R' = R' = Me (2a); R' = Me, R' = Ph (2b); R' = R' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R'O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)). A mechanism is proposed for the unexpected formation of [4](+) in which the formation of the donor-stabilized adduct [3](+) occurs as the first step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号