首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

2.
The compounds HM(CO)4SnPh3, M = Os (10), Ru (11) are activated in the presence of Pt(PBut3)2 and Pd(PBu(t)3)2 toward the insertion of PhC2H into the M-H bond. The compounds PtOs(CO)4(SnPh3)(PBu(t)3)[mu-HCC(H)Ph], 12, and PtOs(CO)4(SnPh3)(PBu(t)3)[mu-H2CCPh], 13, were obtained from the reaction of 10 with PhC2H in the presence of Pt(PBu(t)3)2. Compounds 12 and 13 are isomers containing alkenyl ligands formed by the insertion of the PhC2H molecule into the Os-H bond at both the substituted and unsubstituted carbon atoms of the alkyne. Both compounds contain a Pt(PBu(t)3) group that is bonded to the osmium atom and a bridging alkenyl ligand that is pi-bonded to the osmium atom. The reaction of 11 with PhC2H in the presence of Pt(PBu(t)3)2 yielded the products PtRu(CO)4(SnPh3)(PBu(t)3)[mu-HC2(H)Ph], 14, and PtRu(CO)4(SnPh3)(PBut3)[mu-H2C2Ph], 15, which are also isomers similar to 12 and 13. The reaction of 11 with PhC2H in the presence of Pd(PBu(t)3)2 yielded the product PdRu(CO)4(SnPh3)(PBu(t)3)[mu-H2C2Ph], 16. Compound 16 contains a Pd(PBu(t)3) group bonded to the ruthenium atom and a bridging H2C2Ph ligand that is pi-bonded to the palladium atom. Compound 10 reacted with Pt(PBu(t)3)2 in the absence of PhC2H to yield the compound PtOs(CO)4(SnPh3)(PBu(t)3)(mu-H), 17. Compound 17 is a Pt(PBu(t)3) adduct of 10. It contains a Pt-Os bond with a bridging hydrido ligand. Compound 17 reacted with PhC2H to yield 12. Compound 12 reacted with PhC2H to yield the compound PtOs(CO)3(SnPh3)(PBu(t)3)[mu-HCC(Ph)C(H)C(H)Ph], 18. Compound 18 contains a bridging 2,4-diphenylbutadienyl ligand, HCC(Ph)C(H)C(H)Ph, that is pi-bonded to the osmium atom and sigma-bonded to the platinum atom. Fenkse-Hall molecular orbitals of 17 were calculated. The LUMO of 17 exhibits an empty orbital on the platinum atom that appears to be the most likely site for PhC2H addition prior to its insertion into the Os-H bond.  相似文献   

3.
Two new compounds PtRe3(CO)12(PBut3)(micro-H)3, 9, and PtRe2(CO)9(PBut3)(micro-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re3(CO)12(micro-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt2Re2(CO)7(PBut3)2(micro-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBut3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBut3)2(micro-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97 degrees C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt2Re2(CO)8(PBut3)2(micro-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO)6(PBut3)3(micro-H)2, 14, and Pt3Re2(CO)6(PBut3)3(micro-H)4, 15, respectively. Density functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number.  相似文献   

4.
Three new compounds, PtOs(3)(CO)(12)(PBu(t)(3)) (10), Pt(2)Os(3)(CO)(12)(PBu(t)(3))(2) (11), and Pt(3)Os(3)(CO)(12)(PBu(t)(3))(3) (12), have been obtained from the reaction of Pt(PBu(t)(3))(2) with Os(3)(CO)(12) (9). The products were formed by the sequential addition of 1-3 Pt(PBu(t)(3)) groups to the three Os-Os bonds of the metal cluster of Os(3)(CO)(12). In solution, compounds 10-12 interconvert among themselves by intermolecular exchange of the Pt(PBu(t)(3)) groups. When 11 is treated with PPh(3), the mono- and bis(PPh(3)) derivatives of 9, Os(3)(CO)(11)(PPh(3)) and Os(3)(CO)(10)(PPh(3))(2), were obtained by elimination of the Pt(PBu(t)(3)) groups together with one and two CO ligands, respectively. When heated, compound 11 was transformed into the new compound Pt(2)Os(3)(CO)(10)(PBu(t)(3))(PBu(t)(2)CMe(2)CH(2))(mu-H) (13) by the loss of two CO ligands and a metalation of one of the methyl groups of one of the PBu(t)(3) ligands. Compounds 10-13 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

5.
HOs(CO)4SnPh3, 1 reacts with PhC2H in the presence to Pt(PBut3)2 to yield the alkyne insertion product PtOs(CO)4(SnPh3)(PBut3)[mu-HC2(H)Ph], 2 containing a Pt(PBut3)(CO) group coordinated to the osmium atom and the alkenyl ligand. In the absence of PhC2H, 1 reacts with Pt(PBut3)2 to form a Pt(PBut3) adduct, PtOs(CO)4(SnPh3)(PBut3)(mu-H), 3 at the Os-H bond. This adduct is readily transformed to 2 upon reaction with PhC2H. In the absence of the Pt(PBut3) promoter, PhC2H does not react with 1.  相似文献   

6.
Adams RD  Captain B  Zhu L 《Inorganic chemistry》2005,44(19):6623-6631
Reaction of PtRu5(CO)15(PBut3)(C), 3, with hydrogen at 97 degrees C yielded the new dihydride-containing cluster compound PtRu5(CO)14(PBut3)(mu-H)2(mu6-C), 5. Compound 5 was characterized crystallographically and was shown to contain an octahedral cluster consisting of one platinum and five ruthenium atoms with a carbido ligand in the center. Two hydrido ligands bridge two oppositely positioned PtRu bonds. Compound 5 reacts with Pt(PBut3)2 to yield Pt2Ru5(CO)14(PBut3)2(mu-H)2(mu6-C), 6, a Pt(PBut3) adduct of 5, by adding a Pt(PBut3) group as a bridge across one of the Ru-Ru bonds in the square base of the Ru5 portion of the cluster. Compound 6 is dynamically active on the NMR time scale by a mechanism that appears to involve a shifting of the Pt(PBut3) group from one Ru-Ru bond to another. Two new complexes, PtRu5(CO)13(PBut3)(mu-H)3(GePh3)(mu5-C), 7, and PtRu5(CO)13(PBut3)(mu-H)2(mu-GePh2)(mu6-C), 8, were obtained from the reaction of 5 with HGePh3. The cluster of 7 has an open structure in which the Pt(PBut3) group bridges an edge of the square base of the square pyramidal Ru5 cluster. Compound 7 also has three bridging hydrido ligands and one terminal GePh3 ligand. When heated to 97 degrees C, 7 is slowly converted to 8 by cleavage of a phenyl group from the GePh3 ligand and elimination of benzene by its combination with one of the hydrido ligands. The PtRu5 metal cluster of 8 has a closed octahedral shape with a GePh2 ligand bridging one of the Ru-Ru bonds. Two tin-containing compounds, PtRu5(CO)13(PBut3)(mu-H)3(SnPh3)(mu5-C), 9, and PtRu5(CO)13(PBut3)(mu-H)2(mu-SnPh2)(mu6-C), 10, which are analogous to 7 and 8 were obtained from the reaction of 5 with HSnPh3.  相似文献   

7.
Adams RD  Captain B  Fu W  Smith MD 《Inorganic chemistry》2002,41(21):5593-5601
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)SnH in the presence of UV irradiation has yielded the Ph(3)SnH adduct Ru(5)(CO)(15)(SnPh(3))(mu(5)-C)(mu-H), 3, by SnH bond activation and cleavage of one Ru-Ru bond in the cluster of 1. The reaction of 1 with Ph(3)SnH at 127 degrees C yielded the high nuclearity cluster compound Ru(5)(CO)(10)(SnPh(3))(mu-SnPh(2))(4)(&mu(5)-C)(mu-H), 4, that contains five tin ligands. Four of these are SnPh(2) groups that bridge each edge of the base of the Ru(5) square pyramidal cluster. The reaction of Ph(3)SnH with the benzene-substituted cluster Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 2, at 68 degrees C yielded two products: Ru(5)(CO)(11)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 5, and Ru(5)(CO)(10)(SnPh(3))(2)(C(6)H(6))(mu(5)-C)(mu-H)(2), 6. Both contain square pyramidal Ru(5) clusters with one and two SnPh(3) groups, respectively. At 127 degrees C, the reaction of 2 with an excess of Ph(3)SnH has led to the formation of two new high-nuclearity cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 7, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu-H), 8. Both compounds contain square pyramidal Ru(5) clusters with SnPh(2) groups bridging each edge of the square base. Compound 8 contains a SnPh(3) group analogous to that of compound 4. When treated with CO, compound 8 is converted to 4. When heated to 68 degrees C, compound 5 was converted to the new compound Ru(5)(CO)(11)(C(6)H(6))(mu(4)-SnPh)(mu(3)-CPh), 9, by loss of benzene and the shift of a phenyl group from the tin ligand to the carbido carbon atom to form a triply bridging benzylidyne ligand and a novel quadruply bridging stannylyne ligand.  相似文献   

8.
The bis-phosphine compounds M(PBut3)2, M = Pd and Pt, readily eliminate one PBut3 ligand and transfer MPBut3 groups to the ruthenium-ruthenium bonds in the compounds Ru3(CO)12, Ru6(CO)17(micro6-C), and Ru6(CO)14(eta6-C6H6)(micro6-C) without displacement of any of the ligands on the ruthenium complexes. The new compounds, Ru3(CO)12[Pd(PBut3)]3, 10, and Ru6(CO)17(micro6-C)[Pd(PBut3)]2, 11, Ru6(CO)17(micro6-C)[Pt(PBut3)]n, n = 1 (12), n = 2 (13), and Ru6(CO)14(eta6-C6H6)(micro6-C)[Pd(PBut3)]n, n = 1 (15), n = 2 (16), have been prepared and structurally characterized. In most cases the MPBut3 groups bridge a pair of mutually bonded ruthenium atoms, and the associated Ru-Ru bond distance increases in length. Fenske-Hall calculations were performed on 10 and 11 to develop an understanding of the electron deficient metal-metal bonding. 10 undergoes a Jahn-Teller distortion to increase bonding interactions between neighboring Ru(CO)4 and Pd(PBut3) fragments. 11 has seven molecular orbitals important to cluster bonding in accord with cluster electron-counting rules.  相似文献   

9.
Three new compounds, Ru4(mu4-GePh)2(mu-GePh2)2(mu-CO)2(CO)8 (11), Ru4(mu4-GePh)2(mu-GePh2)3(mu-CO)(CO)8 (12), and Ru4(mu4-GePh)2(mu-GePh2)4(CO)8 (13), were obtained from the reaction of H(4)Ru(4)(CO)12 with excess Ph(3)GeH in octane (11 and 12) or decane (13) reflux. Compound 11 was converted to compound 13 by reaction with Ph(3)GeH by heating solutions in nonane solvent to reflux. Compounds 11-13 each contain a square-type arrangement of four Ru atoms capped on each side by a quadruply bridging GePh ligand to form an octahedral geometry for the Ru(4)Ge(2) group. Compound 11 also contains two edge-bridging GePh(2) groups on opposite sides of the cluster and two bridging carbonyl ligands. Compound 12 contains three edge-bridging GePh(2) groups and one bridging carbonyl ligand. Compound 13 contains four bridging GePh(2) groups, one on each edge of the Ru4 square. The reaction of H(4)Os(4)(CO)12 with excess Ph(3)GeH in decane at reflux yielded two new tetraosmium cluster complexes, Os4(mu4-GePh)2(mu-GePh2)3(mu-CO)(CO)8 (14) and Os4(mu4-GePh)2(mu-GePh(2))4(CO)8 (15). These compounds are structurally similar to compounds 12 and 13, respectively.  相似文献   

10.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

11.
The hydride and PhC2H complexes, Ru5(CO)14(mu6-C)[Pt(PBut3)](mu-H)2, 2, and Ru5(CO)13(mu5-C)(PhC2H)[Pt(PBut3)], 3, were obtained from the reactions of Ru5(CO)15(C)[Pt(PBut3)], 1, with hydrogen and PhC2H, respectively. Styrene was formed catalytically when hydrogen and PhC2H were allowed to react with 3 in combination, and the complex Ru5(CO)12(mu5-C)[PtPBut3](PhC2H)(mu-H)2, 4, containing both hydrides and a PhC2H ligand was formed. The catalysis is promoted by the presence of the platinum atom in the complexes.  相似文献   

12.
The reaction of Mn(2)(CO)(7)(mu-S(2)), 1, with Pt(PPh(3))(2)(PhC(2)Ph) yielded the new complex, Mn(2)(CO)(6)Pt(PPh(3))(2)(mu(3)-S)(2), 3, by loss of CO and insertion of a Pt(PPh(3))(2) group into the S-S bond of 1. Complex 3 was characterized crystallographically and was found to consist of an open Mn(2)Pt cluster with one Mn-Mn bond, 2.8154(14) A, one Mn-Pt bond, 2.9109(10) A, and two triply bridging sulfido ligands. Compound 3 reacts with CO to form adduct Mn(2)(CO)(6)(mu-CO)Pt(PPh(3))(2)(mu(3)-S)(2), 4. Compound 4 also contains an open Mn(2)Pt cluster with two triply bridging sulfido ligands but has only one metal-metal bond, Mn-Mn = 2.638(2) A. Under nitrogen, compound 4 readily loses CO and reverts back to 3.  相似文献   

13.
Oxidative addition of the silanes R(3)SiH (R(3)= Ph(3), Et(3), EtMe(2)) to the unsaturated cluster [Os(3)(micro-H)[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(8)] leads to the saturated clusters [Os(3)(micro-H)(SiR(3))(CO)(9)(micro-dppm)](SiR(3)= SiPh(3) 1, SiEt(3) 2 and SiEtMe(2)3) and the unsaturated clusters [Os(3)(micro -H)(2)(SiR(3))[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(7)](SiR(3)= SiPh(3) 4, SiEt(3) 5 and SiEtMe(2)6). Structures are based on spectroscopic evidence and a XRD structure of [Os(3)(micro-H)(SiPh(3))(CO)(9)(micro-dppm)] 1 in which all non-CO ligands are coordinated equatorially and the hydride and the silyl groups are mutually cis. From variable-temperature (1)H NMR spectra of the SiEt(3) compound 2, exchange of the P nuclei is clearly apparent. Simultaneous migrations of the SiEt(3) group and of the hydride from one Os-Os edge to another generate a time-averaged mirror plane in the molecule. VT (1)H NMR spectra of the somewhat less bulky compound [Os(3)(micro-H)(SiMe(2)Et)(CO)(9)(micro-dppm)] 3 have been analysed. Two isomers 3a and 3b are observed with the hydride ligand located on different Os-Os edges. Synchronous migration of the hydride and SiMe(2)Et groups is faster than the observed interconversion of isomers which occurs by hydride migration alone. The synchronous motion of H and SiR(3)only occurs when these ligands are mutually cis as in the major isomer 3a and we propose that this process requires the formation of a transient silane complex of the type [Os(3)(eta(2)-HSiR(3))(CO)(9)(micro-dppm)]. Turnstile rotation within an Os(CO)(3)(eta(2)-HSiR(3)) group leads to the observed exchange within the major isomer 3a without exchange with the minor isomer. This process is not observed for the minor isomer 3b because the hydride and the silyl group are mutually trans. Protonation to give [Os(3)(micro-H)(2)(SiR(3))(CO)(9)(micro-dppm)](+) totally suppresses the dynamic behaviour because there are no edge vacancies.  相似文献   

14.
The trinuclear iron carbonyls Fe(3)(CO)(n) (n = 12, 11, 10, 9) have been studied by density functional theory using the B3LYP and BP86 functionals. The experimentally known C(2)(v) isomer of Fe(3)(CO)(12), namely Fe(3)(CO)(10)(mu-CO)(2), is found to be the global minimum below the unbridged D(3)(h) isomer analogous to the known structures for Ru(3)(CO)(12) and Os(3)(CO)(12). The lowest-energy isomer found for Fe(3)(CO)(11) is Fe(3)(CO)(9)(mu(3)-CO)(2) with iron-iron distances in the Fe(3) triangle, suggesting the one double bond (2.460 A by B3LYP and 2.450 A by BP86) and two single bonds (2.623 A by B3LYP and 2.604 A by BP86) required to give each Fe atom the favored 18-electron configuration. Two different higher-energy dibridged structures Fe(3)(CO)(9)(mu(2)-CO)(2) are also found for Fe(3)(CO)(11). The lowest-energy isomer found for Fe(3)(CO)(10) is Fe(3)(CO)(9)(mu(3)-CO) with equivalent iron-iron distances in the Fe(3) ring (2.47 A by B3LYP or BP86). The lowest-energy isomer found for Fe(3)(CO)(9) is Fe(3)(CO)(6)(mu-CO)(3) with distances in the Fe(3) triangle possibly suggesting one single bond (2.618 A by B3LYP and 2.601 A by BP86), one weak double bond (2.491 A by B3LYP and 2.473 A by BP86), and one weak triple bond (2.368 A by B3LYP and 2.343 A by BP86). A higher-lying isomer of Fe(3)(CO)(9), i.e., Fe(3)(CO)(8)(mu-CO), at approximately 21 kcal/mol above the global minimum, has iron-iron distances strongly suggesting two single bonds (2.6 to 2.7 A) and one quadruple bond (2.068 A by B3LYP and 2.103 A by BP86). Wiberg Bond Indices are also helpful in evaluating the iron-iron bond orders.  相似文献   

15.
The theoretically characterized (DFT) C4 cumulenic species Mn(C5H4R)(dmpe) [=C=C=C=C(SnPh3)2] was obtained by photolysis of the C(sp2)-Sn bond in the vinylidene complex Mn(C5H4R)(dmpe)[=C=C(SnPh3)-C[triple bond]CSnPh3], which in turn was prepared by a thermal reaction from MnC5H4R(dmpe)(C7H8) and Ph3Sn-C4-SnPh3.  相似文献   

16.
The reaction of Rh(4)(CO)(12) with Pt(PBu(t)(3))(2) in CH(2)Cl(2) at room temperature yielded three new complexes: Rh(4)(CO)(4)-(mu-CO)(4)(mu(4)-CO)(PBu(t)(3))(2)[Pt(PBu(t)(3))], 10, Rh(2)(CO)(8)[Pt(PBu(t)(3))](2)[Pt(CO)], 11, and Rh(2)(CO)(8)[Pt(PBu(t)(3))](3), 12. The reaction of Rh(4)(CO)(12) with an excess of Pt(PBu(t)(3))(2) in hexane at 68 degrees C yielded the new hexarhodium-tetraplatinum compound, Rh(6)(CO)(16)[Pt(PBu(t)(3))](4), 13, in a low yield. All four compounds were characterized by (31)P NMR and single-crystal X-ray diffraction analyses. Compound 10 contains an unsymmetrical quadruply bridging carbonyl ligand in the fold of a butterfly tetrahedral cluster of four rhodium atoms with a Pt(PBu(t)(3)) group bridging the hinge of the butterfly tetrahedron. Compound 11 contains an unsaturated trigonal bipyramidal Rh(2)Pt(3) cluster. Compound 12 is similar to 11 except the trigonal bipyramidal Rh(2)Pt(3) cluster opened by cleavage of one Pt-Rh bond due to steric interactions produced by the replacement of one of the carbonyl ligands in 11 with a tri-tert-butylphosphine ligand. Compound 12 undergoes facile dynamical rearrangements of the metal atoms in the cluster which average the three inequivalent phosphine ligands on the platinum atoms. Compound 13 contains an octahedral cluster of six rhodium atoms with four Pt(PBu(t)(3)) groups bridging edges of that octahedron.  相似文献   

17.
Reactions between unsaturated [H(2)Os(3)(CO)(9)(PR(3))] clusters (PR(3)= PPh(3), P(4-CF(3)-C(6)H(4))(3), PEt(3)) and 2,4-hexadiyne-1,6-diol have been studied. It was found that the diyne ligand easily reacts with all these complexes to give [HOs(3)(CO)8(PR3)-[mu3, eta1:eta3:eta1)-(CH(3)-C-C=CH-CH=C-O)]] complexes (V, VI and VII, respectively) containing the "Os3C3" pentagonal pyramid cluster framework. This structural pattern is formed through the diyne cyclization, dissociation of a CO ligand and eventual coordination of the cyclized organic moiety to the osmium triangle in the [mu3, eta1:eta3:eta1) manner. In the case of the PEt(3) substituted cluster the second hydride transfer onto the organic fragment occurs to afford the nonhydride [Os(3)(CO)(8)(PR3)[mu3), eta1:eta2:eta1)-(CH(3)-CH-C=CH-CH=C-O)]] cluster, VIII, containing distorted pentagonal pyramid framework with a broken Os-C bond. Heating V, VI of VII and in hexane solutions results in formation of the regioisomers (Va, VIa and VIIa) with the phosphine ligand located at adjacent osmium atoms across the Os-Os bond bridged by the coordinated organic fragment. The most probable mechanism of the isomerization includes reversible phosphine migration between these metal centres. Solid-state structure of V, Va, VI, VIIa and VIII have been established by single crystal X-ray diffraction. A general mechanistic scheme for the diyne ligand cyclization and cluster framework transformations is suggested and discussed.  相似文献   

18.
Adams RD  Kwon OS 《Inorganic chemistry》2003,42(20):6175-6182
Reaction of CpMoMn(CO)(8) with elemental selenium and Me(3)NO in the absence of light yielded the diselenido complex CpMoMn(CO)(5)(mu-Se(2)), 2. Compound 2 contains a bridging diselenido ligand lying perpendicular to the Mo-Mn bond, Mo-Mn = 2.8421(10) A. In the presence of room light, the reaction yielded the tetranuclear metal complex Cp(2)Mo(2)Mn(2)(CO)(7)(mu(3)-Se)(4), 3 (36% yield), and 2 (7% yield). Compound 2 reacted with ethylene to yield the ethanediselenato complex CpMoMn(CO)(5)(mu-SeCH(2)CH(2)Se), 4, by insertion of ethylene into the Se-Se bond. Compound 2 also reacted with (PPh(3))(2)Pt(PhC(2)Ph) and CpCo(CO)(2) to yield the complexes CpMoMnPt(PPh(3))(2)(CO)(5)(mu(3)-Se)(2), 5, and Cp(2)CoMoMn(CO)(5)(mu(3)-Se)(2), 6, respectively, by insertion of the metal groupings CpCo and Pt(PPh(3))(2) into the Se-Se bond of 2. The oxo compound Cp(2)CoMo(O)Mn(CO)(5)(mu(3)-Se)(2), 7, was obtained from 6 by decarbonylation at molybdenum by using Me(3)NO. The molecular structures of the complexes 2-7 were established by single-crystal X-ray diffraction analyses.  相似文献   

19.
Chiu TW  Liu YH  Chi KM  Wen YS  Lu KL 《Inorganic chemistry》2005,44(18):6425-6430
Three novel triosmium complexes with unusual coordination characteristics are reported. Treatment of the hydridotriosmium cluster (mu-H)2Os3(CO)10 with CNNPPh3 in CH2Cl2 gave complexes (mu-H)Os3(CO)(10)(mu2-eta2-C(H)NNPPh3) (1) and (mu-H)Os3(CO)10(mu2-eta1-CHPPh3) (2). Complex 1 represents the first example of the existence of a coordinated phosphinazine ligand. An in-situ 1H NMR study showed that the reaction of (mu-H)2Os3(CO)10 with CNNPPh3 produced complex 1 as the initial product in 100% conversion. The latter is not stable in solution and slowly eliminates nitrogen to form an unusual ylide complex 2 in quantitative yield. The thermolysis of 2 in refluxing toluene afforded (mu-H)3Os3(CO)9(mu3-eta1-CCO2CH2Ph) (3) as a colorless compound. Complexes 1-3 were characterized by spectroscopic methods and single-crystal X-ray diffraction analysis. The interesting feature of structure 3 is the presence of a mu3-alkylidyne ligand where the symmetrically triply bridged CCO2CH2Ph fragment lies perpendicular to and above the triosmium triangle.  相似文献   

20.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号