首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particular solutions that correspond to inhomogeneous driving terms in the linearized Boltzmann equation for the case of a binary mixture of rigid spheres are reported. For flow problems (in a plane channel) driven by pressure, temperature, and density gradients, inhomogeneous terms appear in the Boltzmann equation, and it is for these inhomogeneous terms that the particular solutions are developed. The required solutions for temperature and density driven problems are expressed in terms of previously reported generalized (vector-valued) Chapman–Enskog functions. However, for the pressure-driven problem (Poiseuille flow) the required particular solution is expressed in terms of two generalized Burnett functions defined by linear integral equations in which the driving terms are given in terms of the Chapman–Enskog functions. To complete this work, expansions in terms of Hermite cubic splines and a collocation scheme are used to establish numerical solutions for the generalized (vector-valued) Burnett functions.  相似文献   

2.
A Legendre expansion of the (matrix) scattering kernel relevant to the (vector- valued) linearized Boltzmann equation for a binary mixture of rigid spheres is used to define twelve solutions that are linear in the spatial variables {x, y, z}. The twelve (asymptotic) solutions are expressed in terms of three vector-valued functions A (1)(c), A(2)(c), and B(c). These functions are generalizations of the Chapman–Enskog functions used to define asymptotic solutions and viscosity and heat conduction coefficients for the case of a single-species gas. To provide evidence that the three Chapman–Enskog vectors exist as solutions of the defining linear integral equations, numerical results developed in terms of expansions based on Hermite cubic splines and a collocation scheme are reported for two binary mixtures (Ne-Ar and He-Xe) with various molar concentrations.  相似文献   

3.
A Legendre expansion of the (matrix) scattering kernel relevant to the (vector- valued) linearized Boltzmann equation for a binary mixture of rigid spheres is used to define twelve solutions that are linear in the spatial variables {x, y, z}. The twelve (asymptotic) solutions are expressed in terms of three vector-valued functions A (1)(c), A(2)(c), and B(c). These functions are generalizations of the Chapman–Enskog functions used to define asymptotic solutions and viscosity and heat conduction coefficients for the case of a single-species gas. To provide evidence that the three Chapman–Enskog vectors exist as solutions of the defining linear integral equations, numerical results developed in terms of expansions based on Hermite cubic splines and a collocation scheme are reported for two binary mixtures (Ne-Ar and He-Xe) with various molar concentrations.  相似文献   

4.
We study the large-time behavior of global smooth solutions to the Cauchy problem for hyperbolic regularization of conservation laws. An attracting manifold of special smooth global solutions is determined by the Chapman–Enskog projection onto the phase space of consolidated variables. For small initial data we construct the Chapman–Enskog projection and describe its properties in the case of the Cauchy problem for moment approximations of kinetic equations. The existence conditions for the Chapman–Enskog projection are expressed in terms of the solvability of the Riccati matrix equations with parameter. Bibliography: 21 titles. Translated from Problems in Mathematical Analysis 39 February, 2009, pp. 27–63.  相似文献   

5.
The paper is aimed at studying solvability conditions for the quadratic matrix Riccati equation that arises in connection with the Chapman–Enskog projection for the Cauchy problem and the mixed problem for moment approximations of kinetic equations. The structure of the matrix equation allows for the formulation of necessary and sufficient conditions for the existence of solutions in terms of eigenvectors and associated vectors of the coefficient matrix.  相似文献   

6.
Even though the system of the compressible Navier–Stokes equations is not a limiting system of the Boltzmann equation when the Knudsen number tends to zero, it is the second order approximation by applying the Chapman–Enskog expansion. The purpose of this paper is to justify this approximation rigorously in mathematics. That is, if the difference between the initial data for the compressible Navier–Stokes equations and the Boltzmann equation is of the second order of the Knudsen number, so is the difference between two solutions for all time. The analysis is based on a refined energy method for a fluid-type system using the techniques for the system of viscous conservation laws.  相似文献   

7.
A lattice Boltzmann model for the bimolecular autocatalytic reaction–diffusion equation is proposed. By using multi-scale technique and the Chapman–Enskog expansion on complex lattice Boltzmann equation, we obtain a series of complex partial differential equations, complex equilibrium distribution function and its complex moments. Then, the complex reaction–diffusion equation is recovered with higher-order accuracy of the truncation error. This equation can be used to describe the bimolecular autocatalytic reaction–diffusion systems, in which a rich variety of behaviors have been observed. Based on this model, the Fitzhugh–Nagumo model and the Gray–Scott model are simulated. The comparisons between the LBM results and the Alternative Direction Implicit results are given in detail. The numerical examples show that assumptions of source term can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the complex reaction–diffusion equation.  相似文献   

8.
In this paper, we proposed a higher-order moment method in the lattice Boltzmann model for the conservation law equation. In contrast to the lattice Bhatnagar–Gross–Krook (BGK) model, the higher-order moment method has a wide flexibility to select equilibrium distribution function. This method is based on so-called a series of partial differential equations obtained by using multi-scale technique and Chapman–Enskog expansion. According to Hirt’s heuristic stability theory, the stability of the scheme can be controlled by modulating some special moments to design the third-order dispersion term and the fourth-order dissipation term. As results, the conservation law equation is recovered with higher-order truncation error. The numerical examples show the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the conservation law equation.  相似文献   

9.
A general algorithm for building a uniform asymptotic solution of the kinetic equations for spatially inhomogeneous reactive gas mixtures is proposed. It solves the problem of irregular asymptotic solution arising in the ordinary Chapman–Enskog method, providing expressions for chemical reaction rates that agree with the mono-molecular reaction theory. We study a quasi-stationary behavior of the system, characterized by the slowly varying gas-dynamic variables which number is greater than the number of integral invariants of the collision operator. The gas-dynamic equations for reacting and relaxing gas mixtures are derived in general form. It is shown that accurate treatment of non-equilibrium processes gives rise to additional terms caused by the strong influence of small perturbations of quasi-equilibrium distribution functions on the kinetics of high-threshold physical and chemical processes. These terms are describing the influence of inelastic collisions, expansion/compression processes and spatial non-uniformity of gas-dynamic variables.  相似文献   

10.
Abstract In [16] a visco-elastic relaxation system, called the relaxed Burnett system, was proposed by Jinand Slemrod as a moment approximation to the Boltzmann equation. The relaxed Burnett system is weaklyparabolic, has a linearly hyperbolic convection part, and is endowed with a generalized eotropy inequality. Itagrees with the solution of the Boltzmann equation up to the Burnett order via the Chapman-Enskog expansion. We develop a one-dimensional non-oscillatory numerical scheme based on the relaxed Burnett system forthe Boltzmann equation. We compare numerical results for stationary shocks based on this relaxation scheme,and those obtained by the DSMC (Direct Simulation Monte Carlo), by the Navier-Stokes equations and bythe extended thermodynamics with thirteen moments (the Grad equations). Our numerical experiments showthat the relaxed Burnett gives more accurate approximations to the shock profiles of the Boltzmann equationobtained by the DSMC, for a range of Mach numbers for hypersonic flows, th  相似文献   

11.
For the Enskog equation with a symmetrized kernel in a box an existence theorem is proved for initial data with finite mass, energy and entropy. Then by letting the diameter of the molecules go to zero we prove the weak convergence of solutions of the Enskog equation to solutions of the Boltzmann equation.  相似文献   

12.
We consider a stochastic differential equation in a Hilbert space with time-dependent coefficients for which no general existence and uniqueness results are known. We prove, under suitable assumptions, the existence and uniqueness of a measure valued solution, for the corresponding Fokker–Planck equation. In particular, we verify the Chapman–Kolmogorov equations and get an evolution system of transition probabilities for the stochastic dynamics informally given by the stochastic differential equation.  相似文献   

13.
The well-known Lagrange method for linear inhomogeneous differential equations is generalized to the case of second-order equations with constant operator coefficients in locally convex spaces. The solutions are expressed in terms of uniformly convergent functional vector-valued series generated by a pair of elements of a locally convex space. Sufficient conditions for the continuous dependence of solutions on the generating pair are obtained. The solution of the Cauchy problem for the equations under consideration is also obtained and conditions for its existence and uniqueness are given. In addition, under certain conditions, the so-called general solution of the equations (a function of most general form from which any particular solution can be derived) is obtained. The study is carried out using the characteristics (order and type) of an operator and of a sequence of operators. Also, the convergence of operator series with respect to equicontinuous bornology is used.  相似文献   

14.
A large number of mathematical studies on the Boltzmann equation are based on the Grad's angular cutoff assumption. However, for particle interaction with inverse power law potentials, the associated cross-sections have a non-integrable singularity corresponding to the grazing collisions. Smoothing properties of solutions are then expected. On the other hand, the uncertainty principle, established by Heisenberg in 1927, has been developed so far in various situations, and it has been applied to the study of the existence and smoothness of solutions to partial differential equations. This paper is the first one to apply this celebrated principle to the study of the singularity in the cross-sections for kinetic equations. Precisely, we will first prove a generalized version of the uncertainty principle and then apply it to justify rigorously the smoothing properties of solutions to some kinetic equations. In particular, we give some estimates on the regularity of solutions in Sobolev spaces w.r.t. all variables for both linearized and nonlinear space inhomogeneous Boltzmann equations without angular cutoff, as well as the linearized space inhomogeneous Landau equation.  相似文献   

15.
In this work, we give a perturbation theorem for strong polynomial solutions to the zero surface tension Hele-Shaw equation driven by injection or suction, the so called Polubarinova–Galin equation. This theorem enables us to explore properties of solutions with initial functions close to polynomials. Applications of this theorem are given in the suction and injection cases. In the former case, we show that if the initial domain is close to a disk, most of the fluid will be sucked before the strong solution blows up. In the latter case, we obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson complex moments. This rescaling behavior result generalizes a recent result regarding large-time rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper, a short proof of existence and uniqueness of strong solutions to the Polubarinova–Galin equation is given.  相似文献   

16.
 We show how the singularities are propagated for the (spatially inhomogeneous) Boltzmann equation (with the usual angular cut-off of Grad) in the context of the small solutions first introduced by Kaniel and Shinbrot.  相似文献   

17.
18.
We show the existence of time periodic solutions of the Navier–Stokes equations in bounded domains of \mathbb R3{\mathbb R^3} with inhomogeneous boundary conditions in the strong and weak sense. In particular, for weak solutions, we deal with more generalized conditions on the boundary data for Leray’s problem.  相似文献   

19.
We study type I Fourier–Padé approximation for certain systems of functions formed by the Cauchy transform of finite Borel measures supported on bounded intervals of the real line. This construction is similar to type I Hermite–Padé approximation. Instead of power series expansions of the functions in the system, we take their development in a series of orthogonal polynomials. We give the exact rate of convergence of the corresponding approximants. The answer is expressed in terms of the extremal solution of an associated vector-valued equilibrium problem for the logarithmic potential.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号