首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了导电性TCNQ盐Cu(pn)2(TCNQ)n(n=2和3,pn=1,2-丙二胺,TCNQ=7,7,8,8-四氰基对苯二醌二甲烷)。红外光谱、电子光谱和X-光电子能谱研究表明TCNQ盐中存在TCNQ°和TCNQ-,TCNQ°与TCNQ-之间发生了部分电子转移,致使铜呈混合价态。它们的粉末室温电导率为1.1×10-5~2.4×10-6ohm-1cm-1。  相似文献   

2.
Use of the technique of scanning electrochemical microscopy (SECM) enables the surface of single crystals of 7,7',8,8'-tetracyanoquinodimethane (TCNQ) to be modified in a controlled manner to produce highly dense and micrometer sized regions of semiconducting phase I CuTCNQ nanorod crystals by a nucleation and growth mechanism. This method involves the localized reduction of solid TCNQ to TCNQ- by aqueous phase V(aq)2+ reductant generated at a SECM ultramicroelectrode tip by reduction of V(aq)3+, coupled with the incorporation and reduction of Cu(aq)2+ ions also present in the aqueous electrolyte. SECM parameters can be systematically varied to control the extent of surface modification and the packing density of the CuTCNQ crystals. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images provide evidence that the TCNQ to CuTCNQ solid-solid transformation is accompanied by a drastic localized crystal volume and morphology change achieved by fragmentation of the TCNQ crystal surface. Patterns of semiconducting CuTCNQ (phase I) nanorod shaped crystals have been characterized by SEM, AFM, and infrared (IR) techniques. A reaction scheme has been proposed for the interaction between the electrogenerated mediator V(aq)2+, Cu(aq)2+, and the TCNQ crystal in the nucleation and growth stages of phase I CuTCNQ formation.  相似文献   

3.
合成了通式为[M(Py)m][TCNQ]n(M=Mn,m=4;M=Co,Ni,Cu,m=2;TCNQ=7,7,8,8-四氰基对苯醌二甲烷,n=2,3)的8个过渡金属吡啶配离子的TCNQ电荷转移盐,通过元素分析、红外光谱、顺磁共振谱、光电子能谱、磁化率和电导率对这些电荷转移盐进行了表征,结果表明,在这些电荷转移盐分子中存在TCNQ-和TCNQ0,且TCNQ-与TCNQ0相互作用形成结构单元[TCNQ]n2-(n=2,3),各个结构单元沿一维方向堆积形成分子柱,部分电荷从[TCNQ]n2-向[M(Py)m]2+转移,导致化合物中的金属表现为混合价态.其中3个电荷转移盐具有良好的导电性.  相似文献   

4.
On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated.  相似文献   

5.
The hexaazamacrocycle 1,4,7,10,13,16-hexaazacyclooctadecane, [18]ane-N6, forms mono- and dinuclear derivatives with copper chloride depending on the reaction stoichiometries and times. The mononuclear derivative, [Cu([18]ane-N6)]Cl2.H2O, presents the macrocycle wrapped around the metal atom in a distorted octahedral coordinative environment, while the dinuclear derivative, [Cu2([18]ane-N6)Cl2]Cl2.4H2O, is formed by a central Cu2Cl2 core surrounded by an almost planar macrocycle. The crystal structure of both derivatives is stabilized by a network of hydrogen bonds involving the amine macrocyclic groups, the chloride anions, and the crystallization water molecules. The copper atoms in the dinuclear derivative show a strong antiferromagnetic coupling, as expected for the crystal structure parameters. A mononuclear nickel derivative has also been obtained from nickel nitrate by following the same synthetic procedure. These compounds react with TCNQ salts with formation of two types of derivatives, [M([18]ane-N6)](TCNQ)2 and [M([18]ane-N6)](TCNQ)4, depending on the use of radical-anionic or mixed-valence TCNQ salts in the reaction. The crystal structures of the nickel derivatives show that the former derivatives are built up by macrocyclic metal cations surrounded by dimeric dianions (TCNQ)22-, either isolated or stacked along the crystal. The derivative with four TCNQ units/formula consists of alternated chains of metallomacrocyclic cations and stacked TCNQ anions. The crystal parameters suggest that every TCNQ holds approximately 0.5 electrons and overlaps with a neighboring unit to form dimeric monoanions, (TCNQ)2-.  相似文献   

6.
Cu3Sn alloy nanocrystals are synthesized by sequential reduction of Cu and Sn precursors through a gradual increase of the reaction temperature. By transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), UV/Vis spectroscopy, and X‐ray diffraction (XRD) analyses, the alloy formation mechanism of Cu3Sn nanocrystals has been studied. The incremental increase of the reaction temperature sequentially induces the reduction of Sn, the diffusion of Sn into the preformed Cu nanocrystals, resulting in the intermediate phase of Cu–Sn alloy nanocrystals, and then the formation of Cu3Sn alloy nanocrystals. We anticipate that the synthesis of Cu3Sn alloy nanocrystals encourages studies toward the synthesis of various alloy nanomaterials.  相似文献   

7.
The complexes {(mu4-TCNX)[Fe(CO)2(C5H5)]4}(BF4)4 were prepared as light-sensitive materials from [Fe(CO)2(C5H5) (THF)](BF4) and the corresponding TCNX ligands (TCNE = tetracyanoethene, TCNQ=7,7,8,8-tetracyano-p-quinodimethane, TCNB=1,2,4,5-tetracyanobenzene). Whereas the TCNE and TCNQ complexes are extremely easily reduced species with reduction potentials>+0.3 V vs ferrocenium/ferrocene, the tetranuclear complex of TCNB exhibits a significantly more negative reduction potential at about -1.0 V. Even for the complexes with strongly pi-accepting TCNE and TCNQ, the very positive reduction potentials, the unusually high nitrile stretching frequencies>2235 cm(-1), and the high-energy charge-transfer transitions indicate negligible metal-to-ligand electron transfer in the ground state, corresponding to a largely unperturbed (TCNX degrees)(FeII)4 formulation of oxidation states as caused by orthogonality between the metal-centered HOMO and the pi* LUMO of TCNX. M?ssbauer spectroscopy confirms the low-spin iron(II) state, and DFT calculations suggest coplanar TCNE and TCNQ bridging ligands in the complex tetracations. One-electron reduction to the 3+ forms of the TCNE and TCNQ complexes produces EPR spectra which confirm the predominant ligand character of the then singly occupied MO through isotropic g values slightly below 2, in addition to a negligible g anisotropy of frozen solutions at frequencies up to 285 GHz and also through an unusually well-resolved solution X band EPR spectrum of {(mu4-TCNE)[Fe(CO)2(C5H5)]4}3+ which shows the presence of four equivalent [Fe(CO)2(C5H5)]+ moieties through 57Fe and 13C(CO) hyperfine coupling in nonenriched material. DFT calculations reproduce the experimental EPR data. A survey of discrete TCNE and TCNQ complexes [(mu4-TCNX)(MLn)4] exhibits a dichotomy between the systems {(mu4-TCNX)[Fe(CO)2(C5H5)]4}4+ and {(mu4-TCNQ)[Re(CO)3(bpy)]4}4+ with their negligible metal-to-ligand electron transfer and several other compounds of TCNE or TCNQ with Mn, Ru, Os, or Cu complex fragments which display evidence for a strong such interaction, i.e., an appreciable value delta in the formulation {(mu4-TCNXdelta-)[Mx+delta/4Ln]4}. Irreversibility of the first reduction of {(mu4-TCNB)[Fe(CO)2(C5H5)]4}(BF4)4 precluded spectroelectrochemical studies; however, the high-energy CN stretching frequencies and charge transfer absorptions of that TCNB analogue also confirm the exceptional position of the complexes {(mu4-TCNX)[Fe(CO)2(C5H5)]4}(BF4)4.  相似文献   

8.
The reactions of [fac-Re(CO)(3)(bpy)(MeOH)](PF(6)), bpy = 2.2'-bipyridine, with the TCNX ligands (TCNE = tetracyanoethene, TCNQ = 7,7,8,8-tetracyano-p-quinodimethane, and TCNB = 1,2,4,5-tetracyanobenzene) in CH(2)Cl(2) gave very different results. No reaction was observed with TCNB whereas TCNE produced very labile intermediates which converted under mild conditions to structurally characterized [(mu-CN)[fac-Re(CO)(3)(bpy)](2)](PF(6)) with an eclipsed conformation relative to the almost linear Re-CN-Re axis (Re-N(NC) 2.134(8) A, Re-C(CN) 2.098(8) A). With TCNQ, a stable tetranuclear complex [(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)](BF(4))(4) was obtained. Its structural, electrochemical, and spectroscopic analysis indicates only negligible charge transfer from the rhenium(I) centers to the extremely strong pi acceptor TCNQ. Evidence includes a calculated charge of only -0.09 for coordinated TCNQ according to the empirical structure/charge correlation of Kistenmacher, a high-energy nitrile stretching band nu(CN) = 2235 cm(-1), and unprecedented large anodic shifts >0.7 V of the reduction potentials. DFT calculations were used to confirm and explain the absence of electron delocalization from the electron-rich metals to the TCNQ acceptor bridge. Correspondingly, the X-band and high-frequency (285 GHz) EPR data (g = 2.007) as well as the IR and UV-vis-NIR spectroelectrochemical results (marginal nu(CO) shifts, TCNQ(*-) chromophore bands) support the almost exclusive confinement of the added electron in [(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)](3+) to the TCNQ bridge.  相似文献   

9.
Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.  相似文献   

10.
张启元  严继民 《化学学报》1991,49(4):323-328
用紧束缚近似的EHMO方法对αMTDTPY.TCNQ(1)、β-MTDTPY.TCNQ(2)及MTDTPY.CHL(3)三种电荷转移复合物晶体的电子能带进行了计算。在1中,电子施体(D)分子MTDTPY及受体(A)分子TCNQ形成交替重叠的一维分子柱(M),柱间无净电荷转移。能隙E~G=0.15eV,载流子的产生主要来自热激发。在2及3中,电子施体(D)MTDTPY及受体(A)TCNQ及CHL分子分别相对独立的D及A一维分子柱,载流子的产生主要来自柱间的电荷转移。由电子能带结构及关于载流子迁移的Frohlich-Sewell公式,得出上述三种晶体的室温电导率之比为σ1:σ2:σ3=3.75×10^-^1^0:1:1.15,与实验事实基本一致。关于各分子柱对σ的贡献,2中D柱:A柱~10^3:1;3中D柱:A柱~2:1。根据计算结果,本文还对载流子的迁移机理进行了讨论。  相似文献   

11.
Supported bilayer lipid membrane (s‐BLM) containing one‐dimensional compound 1, TCNQ‐based (TCNQ=7,7,8,8‐tetracyanoquinodimethane) organometallic compound {(Cu2(μ‐Cl)(μ‐dppm)2)(μ2‐TCNQ)}, was prepared and characterized on the self‐assembled monolayer (SAM) of 1‐octadecylmercaptan (C18H37SH) deposited onto Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that the compound 1, dotted inside s‐BLM, can act as mediator for electron transfer across the membrane. Two redox peaks and the charge‐transfer resistance of 400 kΩ were observed for compound 1 inside s‐BLM. The mechanism of the electron transfer across s‐BLM by TCNQ is by electron hopping while TCNQ‐based organometallic compound is by conducting. Further conclusion drawn from this finding is that the TCNQ‐based organometallic compound embedded inside s‐BLM exhibits excellent electron transfer ability than that of free TCNQ. This opens a new path for the development of s‐BLM sensor and/or biosensor by incorporation with TCNQ‐based organometallic compounds.  相似文献   

12.
In order to evaluate the electron transfer ability of organocopper reagents, the reactions of appropriate Michael acceptors with methyl and butylcopper reagents were investigated. The ratio of the conjugate adduct and reduction product was used as a chemical scale for evaluating the electron transfer ability of the alkylcopper reagents. Consequently, the electron transfer ability of methyl and butylcopper reagents is in the following order; Me3CuLi2 > Me2CuLi >> Me2Cu(CN)Li2 > MeCu > MeCu(CN)Li; Bu2CuLi > BuCu(CN)Li - Bu2Cu(CN)Li2 > BuCu.  相似文献   

13.
14.
In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)–peptide complexes can generate c- and z-type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g., protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e., nonmetalated) peptides.  相似文献   

15.
We report the shape evolution process of Cu(2)O nanocrystals upon slow oxidation of Cu under ambient conditions, yielding novel hexagonal and triangular platelike morphologies. The shape of the obtained nanocrystals evolves from hexagonal to triangular to octahedral; the growth patterns are governed by kinetically and thermodynamically controlled growth. Preferential adsorption of I(-) on {111} planes of Cu(2)O nanoparticles induced the selective crystal growth of metastable platelike structures with {111} faces as the basal planes. On aging, the growth process appeared to shift into the thermodynamic regime and the thermodynamically stable octahedral shape is obtained. The possible growth mechanisms were investigated by varying the synthetic conditions. The band gap of Cu(2)O nanooctahedrons was determined by the classical Tauc approach to be 2.24 eV, which is blue shifted with respect to the bulk Cu(2)O value (2.17 eV). Results suggest that the slow oxidation process and use of crystallographic selective surfactants are essential for the appearance of anisotropic metastable shapes. In general, surface energy control by surfactant molecules might provide a convenient channel for tailoring nanocrystal shapes of metal oxides.  相似文献   

16.
The electrochemical reduction of TCNQ to TCNQ*- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to -0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.  相似文献   

17.
Effects of side reactions during the formation of high quality colloidal nanocrystals were studied using ZnO as a model system. In this case, an irreversible side reaction, formation of esters, was identified to accompany formation of ZnO nanocrystals through the chemical reaction between zinc stearate and an excess amount of alcohols in hydrocarbon solvents at elevated temperatures. This irreversible side reaction made the resulting nanocrystals stable and with nearly unity yield regardless of their size, shape, and size/shape distribution. Ostwald ripening and intraparticle ripening were stopped due to the extremely low solubility/stability of the possible monomers because all free ligands in the solution were consumed by the side reaction. However, focusing on size distribution and 1D growth that are needed for the growth of high quality nanocrystals could still occur for high yield reactions. Upon the addition of a small amount of stearic acid or phosphonic acid, immediate partial dissolution of ZnO nanocrystals took place. Although the excess alcohol could not react with the resulting zinc phosphonic acid salt, it could force the newly formed zinc stearate gradually but completely back onto the existing nanocrystals. The results in this report indicate that side reactions are extremely important for the formation of high quality nanocrystals by affecting their quality, yield, and stability under growth conditions. Due to their lack of information in the literature and obvious practical advantages, studies of side reactions accompanying formation of nanocrystals are important for both fundamental science related to crystallization and industrial production of high quality nanocrystals.  相似文献   

18.
The electroreductions of the NAD+ model compounds nicotinamide (I), N1-methyl nicotinamide (II), N′-methyl nicotinamide (III) and isonicotinamide (IV) on carbon electrodes have been studied in aqueous media in the pH range 0–12 by linear-sweep cyclic voltammetry (Scheme 1, I-IV). Logarithmic analyses of the reduction peaks were performed by computing the convolution of the current with time as a function of the potential. On the basis of the experimental results it was concluded that the irreversibility of the electron transfers increased when a glassy carbon electrode was used, and this irreversibility being more marked when a plastic formed carbon electrode was employed. The reduction processes occurred with more difficulty on carbon electrodes than on mercury electrodes. Both the reduction and the reoxidation (when occurred) processes changed with respect to those observed on mercury electrodes, being irreversible electron transfers the rate-determining steps in most cases. Thus, for compounds I, II and III at pH < 2 the reductions occurred by the uptake of two electrons and two H+ ions, and the rate determining step was found to be the first one-electron transfer, for I and III, and the irreversible second electron transfer, preceded by the uptake of an H+ ion, for II. At pH>3 the processes consisted of electrodimerization reactions, preceded by the protonation of the heterocyclic nitrogen in cases I and III. The second electron transfer of the electroreduction of IV always appeared irreversible, in contrast with that found for mercury electrodes.  相似文献   

19.
When water is heated and pressurized above the critical point, it becomes a suitable solvent to employ organic capping ligands to control and stabilize the synthesis of nanocrystals. Without alkanethiol ligands, Cu(NO(3))(2) hydrolyzes to form polydisperse copper(II) oxide particles with diameters from 10 to 35 nm. However, in the presence of 1-hexanethiol, X-ray photoelectron spectroscopy, selected area electron diffraction, and transmission electron microscopy reveal the formation of copper nanocrystals approximately 7 nm in diameter. The use of a different precursor, Cu(CH(3)COO)(2), leads to particles with significantly different morphologies. A mechanism is proposed for sterically stabilized nanocrystal growth in supercritical water that describes competing pathways of hydrolysis to large oxidized copper particles versus ligand exchange and arrested growth by thiols to produce small monodisperse Cu nanoparticles.  相似文献   

20.
The polagrophic and cyclic voltammetric behavior of quinone derivatives (Q) and their palladium(0) complexes, (Q)1 or 2Pd(PPh3)2, has been studied. All free quinone derivatives except 5,8,9,10-tetrahydro-1,4-naphthoquinone (THNQ) showed two reversible waves, and all palladium(0) complexes showed irreversible waves. The reduction half-wave potentials for free quinone derivatives lie in the following order:7,7,8,8-tetracyanoquinodimethane (TCNQ) ? p-benzoquinone (BQ) ? 5,8-dihydro-1,4-naphthoquinone (DHNQ) ? 1,4-naphthoquinone (NQ) ? THNQ. The reduction potentials for quinone derivatives shifted toward the negative or coordination to palladium(0). The extents of the shifts depended on the electron-withdrawing ability of the free quinone derivatives. On the other hand, the oxidation potentials for the central palladium(0) in their complexes showed more positive values in comparison with the potential for Pd(PPh3)4. However, the oxidation potentials were almost constant for all complexes of the quinone derivatives. On the basis of these facts, the phenomena of charge transfer in the complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号