首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the empirical likelihood for constructing a confidence region of the parameter of interest in a multi-link semiparametric model when an infinite-dimensional nuisance parameter exists. The new model covers the commonly used varying coefficient, generalized linear, single-index, multi-index, hazard regression models and their generalizations, as its special cases. Because of the existence of the infinite-dimensional nuisance parameter, the classical empirical likelihood with plug-in estimation cannot be asymptotically distribution-free, and the existing bias correction is not extendable to handle such a general model. We then propose a link-based correction approach to solve this problem. This approach gives a general rule of bias correction via an inner link, and consists of two parts. For the model whose estimating equation contains the score functions that are easy to estimate, we use a centering for the scores to correct the bias; for the model of which the score functions are of complex structure, a bias-correction procedure using simpler functions instead of the scores is given without loss of asymptotic efficiency. The resulting empirical likelihood shares the desired features: it has a chi-square limit and, under-smoothing technique, high order kernel and parameter estimation are not needed. Simulation studies are carried out to examine the performance of the new method.  相似文献   

2.
The censored single-index model provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored and the link function is unknown. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure time models for survival analysis. This paper proposes two methods for estimation of single-index models with randomly censored samples. We first transform the censored data into synthetic data or pseudo-responses unbiasedly, then obtain estimates of the index coefficients by the rOPG or rMAVE procedures of Xia (2006) [1]. Finally, we estimate the unknown nonparametric link function using techniques for univariate censored nonparametric regression. The estimators for the index coefficients are shown to be root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodologies.  相似文献   

3.
An important model in handling the multivariate data is the partially linear single-index regression model with a very flexible distribution—beta distribution, which is commonly used to model data restricted to some open intervals on the line. In this paper, the score test is extended to the partially linear single-index beta regression model. The penalized likelihood estimation based on P-spline is proposed. Based on the estimation, the score test statistics about varying dispersion parameter is given. Its asymptotical property is investigated. Both simulated examples are used to illustrate our proposed methods.  相似文献   

4.
Semiparametric single-index regression involves an unknown finite-dimensional parameter and an unknown (link) function. We consider estimation of the parameter via the pseudo-maximum likelihood method. For this purpose we estimate the conditional density of the response given a candidate index and maximize the obtained likelihood. We show that this technique of adaptation yields an asymptotically efficient estimator: it has minimal variance among all estimators.  相似文献   

5.
Consider a varying-coefficient single-index model which consists of two parts: the linear part with varying coefficients and the nonlinear part with a single-index structure, and are hence termed as varying-coefficient single-index models. This model includes many important regression models such as single-index models, partially linear single-index models, varying-coefficient model and varying-coefficient partially linear models as special examples. In this paper, we mainly study estimating problems of the varying-coefficient vector, the nonparametric link function and the unknown parametric vector describing the single-index in the model. A stepwise approach is developed to obtain asymptotic normality estimators of the varying-coefficient vector and the parametric vector, and estimators of the nonparametric link function with a convergence rate. The consistent estimator of the structural error variance is also obtained. In addition, asymptotic pointwise confidence intervals and confidence regions are constructed for the varying coefficients and the parametric vector. The bandwidth selection problem is also considered. A simulation study is conducted to evaluate the proposed methods, and real data analysis is also used to illustrate our methods.  相似文献   

6.
We consider a multivariate response regression analysis with a vector of predictors. In this article, we develop the modification of principal Hessian directions based on principal components for estimating the central mean subspace without requiring a prespecified parametric model. We use a permutation test suggested by Cook and Yin (Aust New Z J Stat 43:147–199, 2001) for inference about the dimension. Simulation results and one real data are reported, and comparisons are made with four methods—most predictable variates, k-means inverse regression, optimal method of Yoo and Cook (Biometrika 94:231–242, 2007) and canonical correlation approach.  相似文献   

7.
In this paper, we suggest an estimating equations based approach to study a general single-index model with a given out-layer link for longitudinal data and treat the classical one as its special case. Within a wide range of bandwidths which is for estimating the inner-layer nonparametric link, the root-n consistency of the estimator of the index can be proved. The estimation efficiency can be achieved even when there is an infinite-dimensional nuisance parameter to be estimated. The performance of the new method is assessed through the comparison with other existing methods and through an application to an epileptic seizure study.  相似文献   

8.
This paper is concerned with estimating the coefficients in single-index models. We develop a robust estimator, which combines the ideas of rank-based regression inference and outer product of gradients. Both asymptotic and numerical results show that the proposed procedure has better performance than the least-squares-based method when the errors deviate from normal.  相似文献   

9.
In this paper we aim to estimate the direction in general single-index models and to select important variables simultaneously when a diverging number of predictors are involved in regressions. Towards this end, we propose the nonconcave penalized inverse regression method. Specifically, the resulting estimation with the SCAD penalty enjoys an oracle property in semi-parametric models even when the dimension, pn, of predictors goes to infinity. Under regularity conditions we also achieve the asymptotic normality when the dimension of predictor vector goes to infinity at the rate of pn=o(n1/3) where n is sample size, which enables us to construct confidence interval/region for the estimated index. The asymptotic results are augmented by simulations, and illustrated by analysis of an air pollution dataset.  相似文献   

10.
In this note, we revisit the single-index model with heteroscedastic error, and recommend an estimating equation method in terms of transferring restricted least squares to unrestricted least squares: the estimator of the index parameter is asymptotically more efficient than existing estimators in the literature in the sense that it is of a smaller limiting variance.  相似文献   

11.
The empirical likelihood method is especially useful for constructing confidence intervals or regions of parameters of interest. Yet, the technique cannot be directly applied to partially linear single-index models for longitudinal data due to the within-subject correlation. In this paper, a bias-corrected block empirical likelihood (BCBEL) method is suggested to study the models by accounting for the within-subject correlation. BCBEL shares some desired features: unlike any normal approximation based method for confidence region, the estimation of parameters with the iterative algorithm is avoided and a consistent estimator of the asymptotic covariance matrix is not needed. Because of bias correction, the BCBEL ratio is asymptotically chi-squared, and hence it can be directly used to construct confidence regions of the parameters without any extra Monte Carlo approximation that is needed when bias correction is not applied. The proposed method can naturally be applied to deal with pure single-index models and partially linear models for longitudinal data. Some simulation studies are carried out and an example in epidemiology is given for illustration.  相似文献   

12.

We investigate semiparametric estimation of regression coefficients through generalized estimating equations with single-index models when some covariates are missing at random. Existing popular semiparametric estimators may run into difficulties when some selection probabilities are small or the dimension of the covariates is not low. We propose a new simple parameter estimator using a kernel-assisted estimator for the augmentation by a single-index model without using the inverse of selection probabilities. We show that under certain conditions the proposed estimator is as efficient as the existing methods based on standard kernel smoothing, which are often practically infeasible in the case of multiple covariates. A simulation study and a real data example are presented to illustrate the proposed method. The numerical results show that the proposed estimator avoids some numerical issues caused by estimated small selection probabilities that are needed in other estimators.

  相似文献   

13.
Empirical likelihood for single-index models   总被引:1,自引:0,他引:1  
The empirical likelihood method is especially useful for constructing confidence intervals or regions of the parameter of interest. This method has been extensively applied to linear regression and generalized linear regression models. In this paper, the empirical likelihood method for single-index regression models is studied. An estimated empirical log-likelihood approach to construct the confidence region of the regression parameter is developed. An adjusted empirical log-likelihood ratio is proved to be asymptotically standard chi-square. A simulation study indicates that compared with a normal approximation-based approach, the proposed method described herein works better in terms of coverage probabilities and areas (lengths) of confidence regions (intervals).  相似文献   

14.
This paper proposes a method for estimation of a class of partially linear single-index models with randomly censored samples. The method provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure-time models for survival analysis. The estimation procedure involves three stages: first, transform the censored data into synthetic data or pseudo-responses unbiasedly; second, obtain quasi-likelihood estimates of the regression coefficients in both linear and single-index components by an iteratively algorithm; finally, estimate the unknown nonparametric regression function using techniques for univariate censored nonparametric regression. The estimators for the regression coefficients are shown to be jointly root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as all the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodology.  相似文献   

15.
Nonparametric quantile regression with multivariate covariates is a difficult estimation problem due to the “curse of dimensionality”. To reduce the dimensionality while still retaining the flexibility of a nonparametric model, we propose modeling the conditional quantile by a single-index function , where a univariate link function g0(⋅) is applied to a linear combination of covariates , often called the single-index. We introduce a practical algorithm where the unknown link function g0(⋅) is estimated by local linear quantile regression and the parametric index is estimated through linear quantile regression. Large sample properties of estimators are studied, which facilitate further inference. Both the modeling and estimation approaches are demonstrated by simulation studies and real data applications.  相似文献   

16.
This paper studies how to identify influential observations in the functional linear model in which the predictor is functional and the response is scalar. Measurement of the effects of a single observation on estimation and prediction when the model is estimated by the principal components method is undertaken. For that, three statistics are introduced for measuring the influence of each observation on estimation and prediction of the functional linear model with scalar response that are generalizations of the measures proposed for the standard regression model by [D.R. Cook, Detection of influential observations in linear regression, Technometrics 19 (1977) 15-18; D. Peña, A new statistic for influence in linear regression, Technometrics 47 (2005) 1-12] respectively. A smoothed bootstrap method is proposed to estimate the quantiles of the influence measures, which allows us to point out which observations have the larger influence on estimation and prediction. The behavior of the three statistics and the quantile estimation bootstrap based method is analyzed via a simulation study. Finally, the practical use of the proposed statistics is illustrated by the analysis of a real data example, which show that the proposed measures are useful for detecting heterogeneity in the functional linear model with scalar response.  相似文献   

17.
We consider informative dimension reduction for regression problems with random predictors. Based on the conditional specification of the model, we develop a methodology for replacing the predictors with a smaller number of functions of the predictors. We apply the method to the case where the inverse conditional model is in the linear exponential family. For such an inverse model and the usual Normal forward regression model it is shown that, for any number of predictors, the sufficient summary has dimension two or less. In addition, we develop a test of dimensionality. The relationship of our method with the existing dimension reduction theory based on the marginal distribution of the predictors is discussed.  相似文献   

18.
In this paper, we propose a new methodology to deal with PCA in high-dimension, low-sample-size (HDLSS) data situations. We give an idea of estimating eigenvalues via singular values of a cross data matrix. We provide consistency properties of the eigenvalue estimation as well as its limiting distribution when the dimension d and the sample size n both grow to infinity in such a way that n is much lower than d. We apply the new methodology to estimating PC directions and PC scores in HDLSS data situations. We give an application of the findings in this paper to a mixture model to classify a dataset into two clusters. We demonstrate how the new methodology performs by using HDLSS data from a microarray study of prostate cancer.  相似文献   

19.
A new method for estimating high-dimensional covariance matrix based on network structure with heteroscedasticity of response variables is proposed in this paper. This method greatly reduces the computational complexity by transforming the high-dimensional covariance matrix estimation problem into a low-dimensional linear regression problem. Even if the size of sample is finite, the estimation method is still effective. The error of estimation will decrease with the increase of matrix dimension. In addition, this paper presents a method of identifying influential nodes in network via covariance matrix. This method is very suitable for academic cooperation networks by taking into account both the contribution of the node itself and the impact of the node on other nodes.  相似文献   

20.
Thresholding projection estimators in functional linear models   总被引:1,自引:0,他引:1  
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows us to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits us to get easily mean squared error of prediction as well as estimators of the derivatives of the regression function. We prove that these estimators are minimax and rates of convergence are given for some particular cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号