首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
解凤霞  张逢星  李珺 《无机化学学报》2007,23(12):2106-2110
The thermal dehydration and decomposition kinetics of CH2(COO)2Cu·2H2O were investigated using the non-isothermal method by thermogravimetry (TG) technique in N2. The iterative iso-conversional methods were applied to calculate the activation energy Ea of dehydration and decomposition, and the most probable mechanism function G(α) was determined by means of the master plots method. The pre-exponential factor A was obtained on the basis of Ea and G(α). Kinetic parameters (Ea and lnA) of dehydration were given as: Ea=139.79 kJ·mol-1, ln(A/s-1)=47.38. The mechanism function of the dehydration was G(α)=[-ln(1-α)]2/3, and the decomposition of CH2(COO)2Cu proceeds to completion by two distinct reactions. These two reactions overlap in the transition process (0.45<α<0.65). Kinetic parameters (Ea and lnA )of the first reaction of decomposition were: Ea=201.15 kJ·mol-1, ln(A/s-1)=52.29, and the mechanism function was G(α)=[1-α]-0.37. And in the second reaction G(α)=α+(1-α)ln(1-α), Ea=156.74 kJ·mol-1, ln(A/s-1)=39.58.  相似文献   

2.
配合物[Mn(bipy)3](ClO4)2的晶体结构和热分析研究   总被引:5,自引:0,他引:5       下载免费PDF全文
The complex [Mn(bipy)3]·(ClO4)2 was synthesied and characterized by X-ray diffraction. X-ray diffraction result for the single crystal showed that the crystal belongs to triclinic, space group P1, a=0.8123(2),b=1.1024(2), c=1.8646(4)nm,α=102.30(3)°,β=91.00(3)°,γ=99.69(3)°,V=1.6056(6)nm3,Z=2,Dc=1.494g·cm-3. The thermal decomposition of [Mn(bipy)3](ClO4)2 occurred in a three steps pattern. The reaction mechanism of the first step decomposition was deduced as n(1-α)[-ln(1-α)](n-1)/n with the activation energy of 130kJ·mol-1.  相似文献   

3.
The tri(o-chlorobenzyl)tin chloride as well as the tri(o-fluorobenzyl)tin was treated with aqueous solution of NaOH to formed the μ-oxygen-bis[tri(o-chlorobenzyl)tin] and μ-oxygen-bis[tri(o-fluorobenzyl)tin], respectively. The crystal and molecular structures of compound were determined by X-ray diffraction. The crystal(1) belongs to triclinic space group P1 with a=1.0195(5), b=1.0951(6), c=1.0986(6)nm, α=118.250(7), β=104.923(7), γ=99.534(8)°, V=0.9827(9)nm3,Z=1, Dx=1.701g·cm-3, μ(MoKα)=17.12cm-1, F(000)=498, R1=0.0680, wR2=0.13014. The crystal(2) are triclinic, space group P1 with a=0.9635(3), b=1.0797(4), c=1.0852(3)nm, α =105.807(5), β=90.551(6), γ=116.382(5)°, V=0.9619(6)nm3, Z=2, Dx=1.595g·cm-3, μ(MoKα)=13.62cm-1, F(000)=458, R1=0.0268, wR2=0.0674. The bond lengths of Sn-C is 0.2128(9)~2.162(12)nm and 0.2155(4)~0.2162(3)nm, and the Sn-O is 0.1901nm and 0.19166(6)nm, respectively. The bond angle Sn-O-Sn is 180.0(0)°. The tin atom has a distorted tetrahedral geometry. The composition characteristics of some frontier molecular orbitals have been investigated by means of G98W package and taking Lanl2dz basis set. (1) CCDC:184751,(2) CCDC:187572.  相似文献   

4.
μ-氧-双[三(邻溴苄基)锡]的合成和结构研究   总被引:4,自引:0,他引:4  
The tri(o-bromobenzyl)tin bromide was treated with aqueous solution of NaOH to formed the μ-oxygen-bis[tri(o-bromobenzyl)tin]. The crystal structures of compound was determined by X-ray diffraction. The crystal belongs to triclinic, space group with a=1.0544(4) nm, b=1.1029 (4) nm, c=1.1309 (4) nm, α =117.031(5) °, β=107.685 (6) °, γ=98.523(6) °, V=1.0506(6)nm3, Z=1, Dx=2.013g·cm-3, μ(Mo)=69.25cm-1, F(000)=606, R1=0.0524, wR2=0.1196. In the struture the tin atom has a distorted tetrahedral geometry. CCDC: 220514.  相似文献   

5.
The title complex [Sm(o-MOBA)3(phen)·H2O]2·4H2O has been synthesized by the reaction of SmCl3·6H2O with o-methoxybenzoic acid and 1,10-phenanthroline in 1∶3∶1 molar ratio. The crystal structure was determined by X-ray single crystal diffraction. The crystal belongs to triclinic system, space group P1 with a=1.203(10) nm, b=1.293(10) nm, c=1.306(11) nm, α=64.50(10)°, β=81.93(10)°, γ=74.81(10)°. The molecular structure shows that the Sm3+ ion coordinates to nine atoms. The carboxylate groups are bonded to the samarium ion in three modes: monodentate, bidentate chelating, tridentate chelating-bridging. CCDC: 603740.  相似文献   

6.
纳米PbSnO3的制备及其燃烧催化性能的研究   总被引:1,自引:0,他引:1  
Nanocomposite PbSnO3was synthesized by coprecipitation method , and its phase evolution process was investigated. The particle size, crystal form, and phase of samples were determined with XRD, TEM and EDS. The catalytic actiyity of sample on the thermal decomposition of RDX was investigated by DSC. The results show that nanocomposite PbSnO3with the diameter of 9 nm can be obtained by calcining at 600 ℃ for 2 h, which crystal is cubic (pyrochlore type). The catalytic actiyity of nanocomposite PbSnO3on the thermal decomposition of RDX is much higher than that of normal PbSnO3. The nanocomposite PbSnO3can decrease the peak temperature of thermal decomposition of RDX from 240.1 ℃ to 236.5 ℃, and the decomposition enthalpy ΔH of RDX increases 722 J·g-1 (about 70%).  相似文献   

7.
Kinetics of the coordination reaction of tetrakis(N-carbomethoxymethyl-3-pyridyl) porphyrin(abbr. H2Tβ-N-ACMSPyP) with Cu(Ⅱ) ion has been studied in o-phthalic acid buffer system in an ionic strength of 0.5mol·dm-3(KCI) at 35.0±0.1℃.The reaction is catalyzed by o-phthalic ion. The effect of concentration of the cata-lyst, metal ion and pH value of solution was discussed. The kinetics equation of the reaction were obtained as d[CuP4+]/dt=16.15{(1.0+3.35×105[PT2-]2)/1.0+1.57×10-4[H+]2}[Cu2+][P]T. The mechanism of the reaction was proposed. The deformation of the ring of porphyrins is the general condition in the reaction.  相似文献   

8.
A Zinc(Ⅱ) complex [ZnCl2(HL)2] with Schiff base HL derived from rimantadine and salicylaldehyde was synthesized and characterized by elemental analysis, infrared spectra, 1H NMR spectra,molar conductance, ultraviolet and visible spectra, thermal analysis. Its structure was determined by single crystal X-ray diffraction method. The complex, C38H50Cl2N2O2Zn, crystallizes in the orthorhombic system, space group Aba2 with a=1.381 7(3), b=2.275 0(5), c=1.145 0(2) nm, V=3.599(1) nm3, Z=4, Mr=653.79, F(000)=1 496, Dc=1.301 kg·m-3, μ(Mo )=0.866 mm-1. The kinetic parameters were obtained from the analysis of TG curve by integral methods. The functions of thermal decomposition reaction mechanism are: F(α)=[1-(1-α)1/3]2, and kinetic compensation effect equation lnA=0.019 1E-0.142 7. CCDC: 253297.  相似文献   

9.
The novel dinuclear copper(Ⅱ) complex with with N-(2,4-dihydroxybenzalidene)-o-aminobenzoic acid ligand, [Cu(C14H9NO4)]2·2H2O, has been synthesized and characterized by elemental analysis, IR, UV-Vis and thermal analysis. Its crystal structure was determined by single crystal X-ray diffraction techniques. The crystal belongs to monoclinic with space group P21/c. The cell parameters are: a=0.82510(11)nm, b=0.68870(9)nm, c=2.3007(3)nm, β=100.847(2)°, V=1.2840(3)nm3, Z=2,Dc=1.742Mg·m-3, μ(Mo Kα)=1.723mm-1F(000)=684. The structure was refined to final R1=0.0267, wR2=0.0735. The complex molecule structure has dinuclear centrosymmetric dimeric structure in which a planar Cu2O2 core features. The ligand N-(2,4-dihydroxybenzalidene)-o-aminobenzoic acid dianion is μ2-tridentate, chelating one copper(Ⅱ) ion via one nitro-gen, one hydroxy oxygen atom and one carboxylate oxygen atom, and the hydroxy oxygen atom simultaneously co-ordinates to the other copper(Ⅱ) ion of the dimer. In the structure the copper(Ⅱ) ion rendered four-coordination in a distorted square-planar geometry structure. CCDC: 212695.  相似文献   

10.
The complex [Pd(2-Phpy)(μ-Cl)]2 reacts with pyridines (L=pyridine, α-picoline and γ-picoline), amines (L=isopropylamine, tert-butylamine) and ammonia to form the corresponding ortho-palladatedderivatives [Pd(2-Phpy)ClL]. The compounds have been characterized by C, H and Nanalyses and spectroscopic methods (IR and 1H and 13C NMR).TG, DTG and DSC studies of the complexes were carried out in dynamic nitrogen atmosphere. From DSC analyses the heats of decomposition were calculated. The kinetics ofthe first step of thermal decomposition were evaluated from TG data by isothermal methods for L=pyridine and isopropylamine. The activation energies obtained are in the range 90–100 kJ mol-1. The best fitting for data was observed for R2 and A1.5 kinetic models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The thermal behavior of the complex Pr[(C5H8NS2)3(C12H8N2)] in a dry nitrogen flow was examined by TG-DTG analysis. The TG-DTG investigations indicated that Pr[(C5H8NS2)3-(C12H8N2)] was decomposed into Pr2S3 and deposited carbon in one step where Pr2S3 predominated in the final products. The results of non-isothermal kinetic calculations showed that the decomposition stage was the random nucleation and subsequent growth mechanism (n = 2/3), the corresponding apparent activation energy ?was 115.89 kJ·mol-1 and the pre-expo-nential constant ln[A/s] was 7.8697. The empirical kinetics model equation was proposed as/(α) =3/2(1-α)[-ln(1-α)]1/3.The X-ray powder diffraction patterns of the thermal decomposition products at 800℃under N2 atmosphere show that the product can be indexed to the cubic Pr2S3 phase. The transmission electron microscopy (TEM) of the final product reveals the particle appearance of a diameter within 40 nm. The experimental results show that the praseodymium sulfide nanocrystal can be prepared from thermal decomposition of Pr[(C5H8NS2)3(C12H8N2)].  相似文献   

12.
The thermal behavior and non-isothermal decomposition kinetics of 1-amino-1-hydrazino-2,2-dinitro- ethylene potassium salt[K(AHDNE)] were studied under the non-isothermal conditions by different scanning calorimeter(DSC) method. The thermal behavior of K(AHDNE) presents three exothermic decomposition processes. The kinetic equation of the first thermal decomposition reaction obtained is dα/dT=(1019.63/β)3(1-α)[-ln(1-α)]2/3exp(-1.862× 105/RT). The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) of K(AHDNE) are 162.5 and 171.4 ℃, respectively. K(AHDNE) has higher thermal stability than AHDNE.  相似文献   

13.
双[2-(2'-苯氧基)苯并恶唑]二吡啶合锰(II)配合物的研究   总被引:1,自引:0,他引:1  
X射线晶体结构分析结果表明, 标题化合物晶体(C36H26MnN4O4)属单斜晶系, 空间群为P21/a, a=0.9833(3), b=1.8646(3),c=0.9449(1)nm, Z=2, 最终因子Rw=0.057。利用热重分析对配合物晶体两步热分解过程进行了非等温热力学研究, 探讨了反应的可能机理, 得到其相应的动力学参数。第一步非等温动力学方程为: dα/dt=A.exp(-E/RT).2(1-α)^1^/^2, 第二步: dα/dt=A.exp(-E/RT).3/2(1-α)[-ln(1-α)]^1^/^3。  相似文献   

14.
在水-乙醇混合体系中, 将浓硝酸硝化的Sm2O3与1,10-邻菲啰啉反应, 用冰醋酸调节pH≈4, 形成醋酸根桥联的双核钐配合物[Sm2(CH3COO)4(NO3)2(phen)2](phen=1,10-邻菲啰啉), 用元素分析、红外光谱和核磁共振谱等进行了表征, 并用X射线衍射测定了配合物的晶体结构, 此外, 对配合物进行了非等温热分解动力学研究. 该晶体属于三斜晶系, P1空间 群, 晶胞参数a=0.979 6(3) nm, b=0.981 3(4) nm, c=1.127 3(4) nm, α=106.666(5)°, β=113.034(5)°, γ=102.656(5)°, V=0.885 4(5) nm3, Z=1, μ=3.361 mm-1, Dc=1.915 g/cm3, F(000)=498, R1=0.059 6, wR2=0.144 8. 该配合物是双核分子, 2个Sm(Ⅲ)离子通过4个醋酸根的羧基桥联, 每个中心离子分别与周围5个来自羧基的桥氧原子、 一个硝酸根的两个氧原子和一个邻菲啰啉分子中的两个氮原子配位, 形成九配位扭曲多面体. 非等温热分解动力学研究结果表明, 配合物第一步热分解反应可能为二级反应, 其动力学方程为dα/dT=A/[βe-E/RT(1-α)2], 分解反应的表观活化能为344.84 kJ/mol, 指前因子lnA=66.52.  相似文献   

15.
设计合成了两种新型的以聚吡唑硼酸盐、氨基酸为配体的钒氧配合物VO[phCH2CH(NH2)COO][HB(pz)3](1)和VO(3,5-Me2pz)[HB(3,5-Me2pz)3](CH3COO)(2). 通过元素分析、红外光谱对配合物进行了表征, 并利用单晶X射线衍射技术解析了它们的结构. 非等温热分解动力学研究表明, 配合物1和2的热分解反应都是分两步进行的. 通过计算, 配合物1热分解的第一步反应的可能机理为成核与生长(n=1/4); 第二步反应的可能机理为化学反应. 其非等温动力学方程分别为, dα/dT=(A/β)e-E/RT(1/4)(1-α)[-ln(1-α)]-3 和dα/dT=(A/β)e-E/RT(1-α)2. 分解反应的表观活化能分别是223.52 和331.94 kJ·mol-1; 指前因子ln(A/s-1)分别是49.67 和57.50. 配合物2 热分解的第一步反应的可能机理为化学反应; 第二步反应的可能机理为成核与生长(n=1/2). 其非等温动力学方程分别为, dα/dT=(A/β)e-E/RT(1-α)2, 和dα/dT=(A/β)e-E/RT(1/2)(1-α)[-ln(1-α)]-1. 分解反应的表观活化能分别是300.56 和444.72 kJ·mol-1; 指前因子ln(A/s-1)分别是75.53 和92.50.  相似文献   

16.
含CL-20的改性双基推进剂的热行为及非等温反应动力学   总被引:3,自引:0,他引:3  
用DSC和TG方法研究了含六硝基六氮杂异伍兹烷(CL-20)的改性双基推进剂在常压(0.1 MPa)和高压(4和7 MPa)下的热行为和高压下的热分解反应动力学. 结果表明, 该推进剂常压下DSC曲线有3个放热峰, 相应TG曲线有3个失重过程; 而高压下DSC曲线只有一个放热峰, 高压下放热峰的峰温随加热速率增大而升高. 高压下该推进剂放热分解反应机理和反应动力学参数受测试环境压强影响较弱, 反应机理是随机成核和随后生长, 放热分解反应的动力学方程可以表示为, 4 MPa时, dα/dt=1014.5(1-α)[-ln(1-α)]1/3e-17981.7/T; 7 MPa时, dα/dt=1014.7(1-α)·[-ln(1-α)]1/3e-18138.1/T.  相似文献   

17.
梁凯  贾殿赠  卜为名  唐新村 《化学学报》2001,59(7):1009-1014
报道了标题配合物[Ni(PMBPTSC)(H2PMBPTSC)]·C2H5OH·2H2O的制备,晶体结构及非等温热分解动力学,该晶体属单斜晶系,空间群Pn,a=1.0376(3)nm,b=1.1522(3)nm,c=1.7591(3)nm;β=90.75(2)°;V=2.1028(8)nm^3;Z=2,Dc=1.329g/cm^3;μ=0.614mm^-1;F(000)=880.根据TG-DTG曲线,运用Achar法与Coats-Redfer法对配合物第一步热分解反应进行了非等温热分解动力学研究,其机理为三维扩散机理,动力学方程为da/dt=Ae^-E/RT3/2(1-α)^2/3[1-(1-α)^1/3]^-1,动力学补偿效应表达式为lnA=0.307915E-1.20469.  相似文献   

18.
The thermal decomposition kinetics of 1-amino-l,2,3-triazolium nitrate(ATZ-NO3) was investigated by non-isothermal TG-DTG at various heating rates(2,5,10,15 and 20 ℃/min).The results show that the thermal decomposition of ATZ-NO3 consists of two stages corresponding to the losing of nitrate anion,substituent group and the splitting of triazole ring respectively.The kinetic triplets of the two stages were described by a three-step method.First,the differential Kissinger and intergral Ozawa methods were used to calculate the apparent activation energies(E) and pre-exponential factors(A) of the two decomposition stages.Second,two calculation methods(intergral (S)atava-(S)esták and differential Achar methods) were used to obtain several probable decomposition mechanism functions.Third,three judgment methods(average,double-extrapolation and Popescu methods) were used to confirm the most probable decomposition mechanism functions.Both reaction models of the two stages were randominto-nucleation and random-growth mechanisms with n=3/2 for the first stage and n=1/3,m=3 for the second stage.The kinetic equations for the two decomposition stages of ATZ-NO3 may be expressed as da/dt=1013.60·e-128970/RT(1-α)[-1n(1-α)]-1/2 and da/dt=1011.41·e-117370/RT(1-α)[-1n(1-α)]-2/3.The thermodynamic parameters including Gibbs free energy of activation(△G≠),entropy of activation(△S≠) and enthalpy of activation(△H≠),for the thermal decomposition reaction were also derived.  相似文献   

19.
The complex of [Tb2(o-MBA)6(PHEN)2] (o-MBA: o-methylbenzoate and PHEN:1,10-phenanthroline) were synthesized and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [Tb2(o-MBA)6(PHEN)2] in dynamic nitrogen atmosphere was investigated by TG-DTG techniques. The thermal decomposition process of the [Tb2(o-MBA)6(PHEN)2] occurred in three consecutive stages at Tp 294, 427 and 512°C. The kinetic parameters and mechanisms of first decomposition stage from analysis of the TG-DTG curves were obtained by the Malek method. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
利用两步合成法,得到标题化合物3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)银盐(Ag2(BTATz)·2H2O),并用元素分析、X荧光和红外光谱分析对其进行了结构表征。 采用DSC和TG-DTG技术对化合物进行热分解行为及非等温热分解动力学研究。 结果表明,其热分解过程是由1个吸热阶段和2个放热阶段组成,主放热阶段的非等温热分解反应动力学方程为:dα/dt=1014.29×{3(1-α)[-ln(1-α)]1/4/4}exp(-2.10×104/T)。 计算得到化合物的自加速分解温度(TSADT)、热爆炸临界温度(Tb)、热点火温度(TTIT)和绝热至爆时间(tTIAD)分别为517.10 K、580.12 K、531.00 K和90.32 s ,以此来评价其热安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号