首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a surface photovoltage and differential surface photovoltage (DSPV) study of Be δ-doped GaAs/AlAs multiple quantum wells (QWs) with widths ranging from 3 to 20 nm and sheet doping densities from 2 × 1010 to 2.5 × 1012 cm−2 per well aiming to characterize their electronic properties and structural quality. From a line shape analysis of room temperature DSPV spectra the interband excitonic transition energies and broadening parameters for a large number of QW-related subbands have been established. A study of well-width and quantum number dependencies of the excitonic linewidths allowed us to evaluate the various broadening contributions to the spectral line shapes in QWs of different design. It was found that an average half monolayer well-width fluctuations are the dominant broadening mechanism of the excitonic line for QWs thinner than 10 nm. In QWs thicker than 10 nm, the spectral line broadening originates mainly from thermal broadening as well as Stark broadening due to random electric fields of ionized impurities and exciton scattering by free holes.  相似文献   

2.
We review the results of an extensive study of the novel luminescence rings found in GaAs and InGaAs double quantum well structures. We propose that the rings define the edge of a metastable population of carriers between the laser excitation spot and the ring. This population carries wavelike excitations at supersonic speeds. Evidence for and against associating this effect with excitonic superfluidity is reviewed. The effect cannot be easily understood in terms of a Kosterlitz-Thouless transition to a superfluid state. We examine the effects of free carriers in the system and suggest a possible mechanism for the luminescence ring effect.  相似文献   

3.
In this paper, effect of an introduced cubic defect on electrical and optical properties of cubic quantum dot is studied. Self-consistent solution of the Schrödinger-Poisson equations for evaluation of the proposed complex quantum dot is used. Optical properties (absorption and electroabsorption properties associated with intersublevel transition) of the proposed structure are also investigated using density matrix method. Effects of defect size on energy levels, carrier density, matrix element and optical linear absorption coefficient of centered defect quantum box (CDQB) are examined. It is shown that with increasing the defect size a considerable enhancement in magnitude of the absorption coefficient and also red-shift in resonance frequency are achievable. We show that the CDQB has higher absorption peak (at least 80 times) and tunable absorption spectra, due to increase of the matrix element and modified energy sublevels, compared quantum box structure without defect. Also, it is shown that the defect enhances electroabsorption properties (modulation bandwidth and the maximum variation of absorption peak with external field) of the quantum box structure.  相似文献   

4.
We report on a magneto-luminescence on a double quantum well subject to an in-plane magnetic field. The attention is paid to the properties of interwell excitons, which are indirect in the real space and which become indirect in the reciprocal space as well when a finite in-plane magnetic field is applied. Such indirect exciton states become optically inactive unless some relaxation mechanisms of their momentum appear. The experiment is carried out on a sample where, as reported previously, the radiative recombination of indirect excitons is possible due to their localization or via collisions with structural defects. The experimental data presented here, measured at various temperatures, favour the latter mechanism which is less sensitive to the system temperature in comparison with the former one.  相似文献   

5.
The intersubband absorption in square and graded quantum wells under a laser field is calculated within the framework of the effective mass approximation. We conclude that, for quantum wells with different shapes, the laser field amplitude induces an important effect on the electronic and optical properties of the semiconductor structure. This gives a new degree of freedom in various device applications based on the intersubband transition of electrons.  相似文献   

6.
于莉媛  曹俊诚 《中国物理快报》2004,21(12):2504-2506
We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.  相似文献   

7.
We present a new variationnal method for calculating the ground state energy of an electron bound to an impurity located in a quantum well. This method relies on an envelope function which is determined exactly from a formal minimization procedure. The obtained energies are lower by as much as 10% than the ones found by the widely used free electron envelope function. Their large width limits are reached with exponentially small corrections as they should. We also find that, except for narrow wells, the shape of these exact envelope functions strongly depends on the impurity position, being consequently quite different from the usual free electron ones. In order to discuss the improvements brought by our new procedure in the most striking way, we have used a model semiconductor quantum well with infinite barrier height and simplified band structure. Extensions can be made to finite barrier and more realistic band structures, following the same technique. Received 11 December 2000  相似文献   

8.
In this paper the effect of the laser field on the nonlinear optical properties of a square quantum well under the applied electric field is investigated theoretically. The calculations are performed in saturation limit using the density matrix formalism and the effective mass approach. Our results show that the laser field considerably effects the confining potential of the quantum well and thus the nonlinear optical properties.  相似文献   

9.
Optical properties of a Ga0.62In0.38As0.954N0.026Sb0.02/GaAs single quantum well (SQW) tailored at ∼1.5 μm have been investigated by photoreflectance (PR) spectroscopy. The identification of the optical transitions was carried out in accordance with theoretical calculations, which were performed within the framework of the usual envelope function approximation. Using this method, four confined states for both electrons and heavy holes have been found and the optical transitions between them have been determined. The obtained result corresponds to a conduction band offset ratio close to 80%. In addition, the effect of ex situ annealing has been investigated. Lineshape analysis of the PR transitions shows that one of the phenomena responsible for the blueshift of QW transitions is the change in the nitrogen nearest-neighbour environment from Ga-rich to In-rich environments.  相似文献   

10.
With the Schrödinger equations, we investigate the low-intensity light pulse propagation through a semiconductor quantum wells. Through studying the dispersion and absorption properties of the weak probe field, it is shown that slow light propagation is observed in this system. From the view point of practical purpose, it is more advantageous than its corresponding atomic system. Such investigation of slow light propagation may lead to important practical applications in semiconductor quantum information.  相似文献   

11.
The optical response of the intersubband excitation of multiple InAs/AlSb quantum wells embedded in a planar semiconductor microcavity has been studied through angle-dependent reflectance measurements. Using a resonator based on total internal reflection, a strong coupling is demonstrated between the intersubband optical transition and the cavity photon, with the attendant formation of intersubband polaritons. A giant vacuum-Rabi splitting 2ΩR was observed both at liquid helium temperatures () as well as at 300 K (), for a transition energy . The observed ratio is a record high value (14%) for any strongly-coupled systems, and demonstrates the huge potential of this material for the achievement of the ultra-strong coupling regime predicted theoretically.  相似文献   

12.
Spatially localized excitons are observed in InGaN quantum well structures at 4 K by using a micro-photoluminescence (PL) technique. By combining PL and nano-lithographic techniques, we are able to detect PL signals with a 0.2 μm spatial resolution. A sharp PL line (linewidth of <0.4 meV) is clearly obtained, which originates from a single localized exciton induced by a quantum dot like a local potential minimum position. Sharp PL spectra detected in three QWs with different indium compositions confirm that there are exciton localization effects in quantum wells in the blue-green (about 2.60 eV, 477 nm) to purple (about 3.05 eV, 406 nm) regions.  相似文献   

13.
The optical polarization of GaN/AlGaN wurtzite quantum wells in various orientations is studied using an arbitrarily-oriented [hkil] Hamiltonian potential matrix. The optical matrix elements in the wurtzite quantum wells are calculated using the kp finite difference scheme. The results reveal the presence of giant in-plane optical anisotropy (polarized normal to [0001]) in the M-plane (i.e., the -oriented layer plane) GaN/Al0.2Ga0.8N quantum well, due to the positive crystal-field split energy effect (ΔCR>0). The present theoretical results are consistent with the photoluminescence measurements presented in the literature [B. Rau, et al., Appl. Phys. Lett. 77 (2000) 3343].  相似文献   

14.
An overview of recent experimental and theoretical results on stationary and time-dependent photoluminescence spectra in disordered semiconductor heterostructures is presented. In particular, temperature-dependent peak position and linewidth of the luminescence spectra, as well as the luminescence intensity are considered along with the time evolution of the luminescence intensity after pulsed excitation. Emphasis is given on the comparison between experimental and theoretical results aiming at a characterization of disorder in the underlying structures.  相似文献   

15.
This study investigates the optical anisotropy spectrum in the R-plane (i.e., the -oriented layer plane) of GaN/Al0.2Ga0.8N quantum wells of different widths. The optical matrix elements in the wurtzite quantum wells are calculated using the kp finite difference scheme. The calculations show that the valence band mixing effect produces giant in-plane optical anisotropy in -oriented GaN/Al0.2Ga0.8N quantum wells with a narrow width. The nature of the in-plane optical anisotropy is found to be dependent on the well width. Specifically, it is found that the anisotropy changes from x-polarization to y-polarization as the well width increases.  相似文献   

16.
A Schrödinger equation is solved numerically for a barrier in a quantum well and a quantum well in another well structure by the transfer matrix technique. Effect of structure parameters on the transmission probabilities is investigated in detail. The results suggest that symmetry plays an important role in the coupling effect between the quantum wells. The relationship between the width of the inner well and the resonant energy levels in well-in-well structures is also studied. It is found that the ground state energy and the second resonant energy decrease with increasing width of the inner well, while the first resonant energy remains constant.  相似文献   

17.
The electromagnetic modes of planar metal clad dielectric waveguides containing an n-doped quantum well (QW) are studied theoretically. Special attention is paid on the coupling between metal surface plasmons and intersubband plasmons and the manifestation of this coupling in the propagation characteristics of metal/QW/dielectric and multimode metal/QW/dielectric/metal waveguide structures. The results obtained indicate that the modification of the propagation characteristic induced by the above-mentioned coupling is substantial only in the case of metal/QW/dielectric waveguide structures.  相似文献   

18.
We study the behavior of optical bistability (OB) in a triple semiconductor quantum well structure with tunnelling-induced interference, where the system is driven coherently by the probe laser inside the unidirectional ring cavity. The results show that we are able to control efficiently the bistable threshold intensity and the hysteresis loop by tuning the parameters of the system such as laser frequency and tunnelling-induced frequency splitting. This investigation can be used for the development of new types of nanoelectronic devices for realizing switching process.  相似文献   

19.
We theoretically investigated a hybrid absorptive-dispersive optical multistability (OM) behavior in a three-level ladder-type quantum well system inside a unidirectional ring cavity. We find that the frequency detuning of the control field and the electronic cooperation parameter as well as the total decay rates can affect the optical multistability behavior dramatically, which can be used to manipulate efficiently the threshold intensity and the hysteresis loop. The effect of the intensity of the control field on the OM is also studied. Our study is much more practical than its atomic counterpart due to its flexible design and the wide adjustable parameters. Thus it may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.  相似文献   

20.
Considering the strong built-in electric field (BEF) induced by the spontaneous and piezoelectric polarizations and the intrasubband relaxation, we investigate the linear and nonlinear intersubband optical absorptions in InxGa1-xN/AlyGa1-yN strained single quantum wells (QWs) by means of the density matrix formalism. Our numerical results show that the strong BEF is on the order of MV/cm, which can be modulated effectively by the In composition in the QW. This electric field greatly increases the electron energy difference between the ground and the first excited states. The electron wave functions are also significantly localized in the QW due to the BEF. The intersubband optical absorption peak sensitively depends on the compositions of In in the well layer and Al in the barrier layers. The intersubband absorption coefficient can be remarkably modified by the electron concentration and the incident optical intensity. The group-III nitride semiconductor QWs are suitable candidate for infrared photodetectors and near-infrared laser amplifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号